We review the latest aeromagnetic geological data of continental China. We discuss the latest achievements in geological mapping and the newly detected features based on aeromagnetic data. Using aeromagnetic data coll...We review the latest aeromagnetic geological data of continental China. We discuss the latest achievements in geological mapping and the newly detected features based on aeromagnetic data. Using aeromagnetic data collected for more than 50 years, a series of 1:5000000 and 1:1000000 aeromagnetic maps of continental China were compiled using state-of-the-art digital technology, and data processing and transformation. Guided by plate tectonics and continental dynamics, rock physical properties, and magnetic anomalies, we compiled maps of the depth of the magnetic basement of continental China and the major geotectonic units, and presented newly detected geological structures based on the aeromagnefic data.展开更多
The South China Sea locates at the convergence center of the Eurasian Plate,the Pacific Plate and the Indo-Australia plate. The Cenozoic seafloor spreading in the South China Sea Basin is an important part of the tect...The South China Sea locates at the convergence center of the Eurasian Plate,the Pacific Plate and the Indo-Australia plate. The Cenozoic seafloor spreading in the South China Sea Basin is an important part of the tectonic evolution of the South China Sea that records information of the continental margin tectonic history and its impact on regional geologic evolution. Magnetic data contains abundant geological structure information from the surface to deep. This paper reports magnetic data of the South China Sea. Through the conventional processing of these magnetic data,we report general results on the regional magnetic anomalies,such as the upward continuation graph,the polar magnetic anomaly map and the magnetic anomaly partition map. The magnetic anomaly field in the South China Sea is divided into eight areas,of which the characteristics are explained,and the tectonic evolution of the South China Sea is preliminarily discussed.展开更多
The Ordos block is a stable tectonic unit since the Cenozoic. Whether low-resistivity layers exist in the middle and lower crust of this kind block is an open question. This work attempts to reveal the entire crustal ...The Ordos block is a stable tectonic unit since the Cenozoic. Whether low-resistivity layers exist in the middle and lower crust of this kind block is an open question. This work attempts to reveal the entire crustal structure of the block based on interpretation of magnetotelluric data collected along the profile across this region. The result shows that a layered structure characterizes the crust of the Ordos block, with a low-resistivity layer at depth of about 20km, presumably associated with fluids there. In contrast, in the areas of active tectonics on the east and west of the block, there are no such layered electric structures in the crust, and the low-resistivity zones may be related to the decollement zones (or ductile shear zones) in the crust. The difference in electric structure of crust between the Ordos Block and neighboring areas is of significance to analyze the movement and deformation of varied blocks in the continent.展开更多
基金supported by the China Land Aeromagnetic Characteristics and Tectonic Structures Research(No.1212011087009)part of the national geological and mineral resources investigation projects,and the Comprehensive Exploration of Aero Geophysical&Remote Sensing Survey and Interpretation System Research(No.2013AA063905)part of the planning for national high technology research and development
文摘We review the latest aeromagnetic geological data of continental China. We discuss the latest achievements in geological mapping and the newly detected features based on aeromagnetic data. Using aeromagnetic data collected for more than 50 years, a series of 1:5000000 and 1:1000000 aeromagnetic maps of continental China were compiled using state-of-the-art digital technology, and data processing and transformation. Guided by plate tectonics and continental dynamics, rock physical properties, and magnetic anomalies, we compiled maps of the depth of the magnetic basement of continental China and the major geotectonic units, and presented newly detected geological structures based on the aeromagnefic data.
文摘The South China Sea locates at the convergence center of the Eurasian Plate,the Pacific Plate and the Indo-Australia plate. The Cenozoic seafloor spreading in the South China Sea Basin is an important part of the tectonic evolution of the South China Sea that records information of the continental margin tectonic history and its impact on regional geologic evolution. Magnetic data contains abundant geological structure information from the surface to deep. This paper reports magnetic data of the South China Sea. Through the conventional processing of these magnetic data,we report general results on the regional magnetic anomalies,such as the upward continuation graph,the polar magnetic anomaly map and the magnetic anomaly partition map. The magnetic anomaly field in the South China Sea is divided into eight areas,of which the characteristics are explained,and the tectonic evolution of the South China Sea is preliminarily discussed.
基金sponsored by Earthquake Research Project for Public Affair(2008419010)the National Natural Science Foundation of China(40374032, 40534023)+4 种基金the Basic Scientific Research Special Program of the Institute of Geology,CEA(DFIGCEA0607117)the Basic Scientific Research Fund of the State Level Institutes for Commonweal (DF-IGCEA-0607-1-17)the National Basic Research Program(2004CB418402),Chinathe National Key Basic Research Program (95-13-02-02)the Key Program of the Natural Science Foundation of China (40534023)
文摘The Ordos block is a stable tectonic unit since the Cenozoic. Whether low-resistivity layers exist in the middle and lower crust of this kind block is an open question. This work attempts to reveal the entire crustal structure of the block based on interpretation of magnetotelluric data collected along the profile across this region. The result shows that a layered structure characterizes the crust of the Ordos block, with a low-resistivity layer at depth of about 20km, presumably associated with fluids there. In contrast, in the areas of active tectonics on the east and west of the block, there are no such layered electric structures in the crust, and the low-resistivity zones may be related to the decollement zones (or ductile shear zones) in the crust. The difference in electric structure of crust between the Ordos Block and neighboring areas is of significance to analyze the movement and deformation of varied blocks in the continent.