A new magnetic mesoporous As(Ⅲ)adsorbent of Fe_(3)O_(4)@SiO_(2)@Ce-ZrO_(2)was prepared by solvothermal and sol^(-)gel method.The core-shell adsorbent presented a high specific surface area(168.2 m^(2)/g)and fast magn...A new magnetic mesoporous As(Ⅲ)adsorbent of Fe_(3)O_(4)@SiO_(2)@Ce-ZrO_(2)was prepared by solvothermal and sol^(-)gel method.The core-shell adsorbent presented a high specific surface area(168.2 m^(2)/g)and fast magnetic separation performance(5.37 A·m^(2)/kg).Compared with Fe_(3)O_(4)@SiO_(2)@ZrO_(2),the Ce-doped sample exhibited 12%-23%increase in As(Ⅲ)uptake over p H 3-11,which was mainly attributed to the formation of bimetal M—O—As complexes.The coexisted SO^_(4)(2-)and PO^_(4)(3-)weakened As(Ⅲ)adsorption,Ca^(2+)worked oppositely,but the impact of Cl^(-)and NO_(3)^(-)was negligible.The As(Ⅲ)maximum adsorption capacity was 24.52 mg/g at 313 K with an initial As(Ⅲ)concentration of 5 mg/L at pH 7,and its kinetics was well fitted by the pseudo-second-order model.Moreover,the adsorbent exhibited remarkable recyclability.It is suggested that Fe_(3)O_(4)@SiO_(2)@Ce-ZrO_(2)is a promising adsorbent for the advanced treatment of As(Ⅲ)contaminated wastewater.展开更多
基金the financial support from the Open Research Fund of Jiangsu Key Laboratory of Resources and Environmental Information Engineering,China(No.JS201810)。
文摘A new magnetic mesoporous As(Ⅲ)adsorbent of Fe_(3)O_(4)@SiO_(2)@Ce-ZrO_(2)was prepared by solvothermal and sol^(-)gel method.The core-shell adsorbent presented a high specific surface area(168.2 m^(2)/g)and fast magnetic separation performance(5.37 A·m^(2)/kg).Compared with Fe_(3)O_(4)@SiO_(2)@ZrO_(2),the Ce-doped sample exhibited 12%-23%increase in As(Ⅲ)uptake over p H 3-11,which was mainly attributed to the formation of bimetal M—O—As complexes.The coexisted SO^_(4)(2-)and PO^_(4)(3-)weakened As(Ⅲ)adsorption,Ca^(2+)worked oppositely,but the impact of Cl^(-)and NO_(3)^(-)was negligible.The As(Ⅲ)maximum adsorption capacity was 24.52 mg/g at 313 K with an initial As(Ⅲ)concentration of 5 mg/L at pH 7,and its kinetics was well fitted by the pseudo-second-order model.Moreover,the adsorbent exhibited remarkable recyclability.It is suggested that Fe_(3)O_(4)@SiO_(2)@Ce-ZrO_(2)is a promising adsorbent for the advanced treatment of As(Ⅲ)contaminated wastewater.