Bi1-xYbxFeO3(0〈x〈0.2) powders have been synthesized using a sol-gel method. The X- ray diffraction data show a structural transition from the rhombohedral R3c phase to the orthorhombic Pnma phase between x=0.1 and...Bi1-xYbxFeO3(0〈x〈0.2) powders have been synthesized using a sol-gel method. The X- ray diffraction data show a structural transition from the rhombohedral R3c phase to the orthorhombic Pnma phase between x=0.1 and 0.125, which should induce a ferroelectric- paraelectric transformation. The phase transition is also proven by the Raman spectroscopy. A moderate signal on magnetization appears to illustrate the enhancement of magnetization at the transformation boundary, which is suggested to be the destruction of the spin cycloid structure at low concentration. The appearance of antiferromagnetic ordering is proposed to account for the afterward reduction of the magnetization at high concentration.展开更多
The time evolution of the Hamming distance (damage spreading) for the and Ising models on the square lattice is performed with a special metropolis dynamics algorithm. Two distinct regimes are observed according to ...The time evolution of the Hamming distance (damage spreading) for the and Ising models on the square lattice is performed with a special metropolis dynamics algorithm. Two distinct regimes are observed according to the temperature range for both models: a low-temperature one where the distance in the long-time limit is finite and seems not to depend on the initial distance and the system size; a high-temperature one where the distance vanishes in the long-time limit. Using the finite size scaling method, the dynamical phase transition (damage spreading transition) temperature is obtained as for the Ising model.展开更多
Siderite,as an abundant iron ore,has not been effectively utilized,with a low utilization rate.In this study,the in-situ kinetics and mechanism of siderite during suspension magnetization roasting(SMR)were investigate...Siderite,as an abundant iron ore,has not been effectively utilized,with a low utilization rate.In this study,the in-situ kinetics and mechanism of siderite during suspension magnetization roasting(SMR)were investigated to improve the selective conversion of siderite to magnetite and CO,enriching the theoretical system of green SMR using siderite as a reductant.According to the gas products analyses,the peak value of the reaction rate increased with increasing temperature,and its curves presented the feature of an early peak and long tail.The mechanism function of the siderite pyrolysis was the contraction sphere model(R_(3)):f(α)=3(1−α)2/3;E_(α)was 46.4653 kJ/mol;A was 0.5938 s^(−1);the kinetics equation was k=0.5938exp[−46.4653/(RT)].The in-situ HT-XRD results indicated that siderite was converted into magnetite and wüstite that exhibited a good crystallinity in SMR under a N_(2) atmosphere.At 620℃,the saturation magnetization(M_(s)),remanence magnetization(Mr),and coercivity(Hc)of the product peaked at 53.63×10^(-3)A·m^(2)/g,10.23×10^(-3)A·m^(2)/g,and 12.40×10^(3)A/m,respectively.Meanwhile,the initial particles with a smooth surface were transformed into particles with a porous and loose structure in the roasting process,which would contribute to reducing the grinding cost.展开更多
The equations of state of spin-polarized nuclear matter and pure neutron matter are studied in the framework of the Brueckner–Hartree–Fock theory including a three-body force. The energy per nucleon E<SUB>A<...The equations of state of spin-polarized nuclear matter and pure neutron matter are studied in the framework of the Brueckner–Hartree–Fock theory including a three-body force. The energy per nucleon E<SUB>A</SUB>(δ) calculated in the full range of spin polarization for symmetric nuclear matter and pure neutron matter fulfills a parabolic law. In both the cases the spin-symmetry energy is calculated as a function of the baryonic density along with the related quantities such as the magnetic susceptibility and the Landau parameter G<SUB>0</SUB>. The main effect of the three-body force is to strongly reduce the degenerate Fermi gas magnetic susceptibility even more than the value with only two-body force. The equation of state is monotonically increasing with the density for all spin-aligned configurations studied here so that no any signature is found for a spontaneous transition to a ferromagnetic state.展开更多
The effects of partial substitution of Fe element for Ni element on the structure,martensitic transformation and mechanicalproperties of Ni50-xFexMn38Sn12(x=0and3%,molar fraction)ferromagnetic shape memory alloys were...The effects of partial substitution of Fe element for Ni element on the structure,martensitic transformation and mechanicalproperties of Ni50-xFexMn38Sn12(x=0and3%,molar fraction)ferromagnetic shape memory alloys were investigated.Experimentalresults indicate that by substitution of Fe for Ni,the microstructure and crystal structure of the alloys change at room temperature.Compared with Ni50Mn38Sn12alloy,the martensitic transformation starting temperature of Ni47Fe3Mn38Sn12alloy is decreased by32.5K.It is also found that martensitic transformation occurs over a broad temperature window from288.9to352.2K.It is found that themechanical properties of Ni-Mn-Sn alloy can be significantly improved by Fe addition.The Ni47Fe3Mn38Sn12alloy achieves amaximum compressive strength of855MPa with a fracture strain of11%.Moreover,the mechanism of the mechanical propertyimprovement is clarified.Fe doping changes the fracture type from intergranular fracture of Ni50Mn38Sn12alloy to transgranularcleavage fracture of Ni47Fe3Mn38Sn12alloys.展开更多
The effects of Ce doping on the structure,optical,oxidation,thermal and magnetic properties of ZnS:Ce nanorods synthesized by a chemical co-precipitation method were reported.The crystalline phase transformation from ...The effects of Ce doping on the structure,optical,oxidation,thermal and magnetic properties of ZnS:Ce nanorods synthesized by a chemical co-precipitation method were reported.The crystalline phase transformation from cubic to hexagonal structure was observed upon doping ZnS with Ce.Magnetic measurements showed the existence of room temperature ferromagnetism in Ce-doped ZnS nanorods.X-ray photoelectron spectroscopic(XPS)measurements provided evidence for Zn-S bonds and oxidation state of Ce in the near-surface region.Raman spectrum provided evidence for the presence of defects as well as hexagonal structure of 5 wt.%Ce doped ZnS nanorods.Ce substitution induced shape evolution was studied by using TEM.DRS spectra further validated the incorporation of Ce^3+ions.The present study reveals that Ce doped ZnS nanorods may find applications in spintronic devices.展开更多
We study the influence of the chiral phase transition on the chiral magnetic effect. The azimuthal charge-particle correlations as functions of the temperature are calculated. It is found that there is a pronounced cu...We study the influence of the chiral phase transition on the chiral magnetic effect. The azimuthal charge-particle correlations as functions of the temperature are calculated. It is found that there is a pronounced cusp in the correlations as the temperature reaches its critical value for the QCD phase transition. It is predicted that there will be a drastic suppression of the charge-particle correlations as the collision energy in RHIC decreases to below a critical value. We show then the azimuthal charge-particle correlations can be the signal to identify the occurrence of the QCD phase transitions in RHIC energy scan experiments.展开更多
Using the effective-field theory we studied the magnetic properties of a spin-1/2 Ising supedattice, which consist of three different ferromagnet materials. The magnetic behavior of this superlattice is examined. The ...Using the effective-field theory we studied the magnetic properties of a spin-1/2 Ising supedattice, which consist of three different ferromagnet materials. The magnetic behavior of this superlattice is examined. The critical temperature and the compensation temprature of the system are studied as a function of the exchange interactions between the nearest-neiboring spins across the interface and in the intraface. Temperature dependence of magenetizations is also given.展开更多
文摘研究了非化学计量成分的多晶Ni52Mn21+xGa27-x(x=0-5)系列合金的热弹性马氏体相变和磁相变,合金的马氏体相变温度Ms随Mn含量的增加而升高,当x>4时, Ms已经升高到室温以上,而马氏体相变滞后△T随x的增大而减小;合金的磁相变温度TC随x增加而升高,但变化范围不大,在x>2后,Tc保持在348 K左右.实验获得了一种具有实用前景的合金成分——Ni52Mn25Ga23合金,其马氏体相变温度在室温以上,相变滞后仅为5 K.
基金This work was supported by the Cultivation Fund of the Key Scientific and Technical Innovation Project, the Ministry of Education of China (No.708070), the National Natural Science Foundation of China (No.10874046 and No.11104081), and the Fundamental Research Funds for the Central Universities (No.2012zz0078).
文摘Bi1-xYbxFeO3(0〈x〈0.2) powders have been synthesized using a sol-gel method. The X- ray diffraction data show a structural transition from the rhombohedral R3c phase to the orthorhombic Pnma phase between x=0.1 and 0.125, which should induce a ferroelectric- paraelectric transformation. The phase transition is also proven by the Raman spectroscopy. A moderate signal on magnetization appears to illustrate the enhancement of magnetization at the transformation boundary, which is suggested to be the destruction of the spin cycloid structure at low concentration. The appearance of antiferromagnetic ordering is proposed to account for the afterward reduction of the magnetization at high concentration.
文摘The time evolution of the Hamming distance (damage spreading) for the and Ising models on the square lattice is performed with a special metropolis dynamics algorithm. Two distinct regimes are observed according to the temperature range for both models: a low-temperature one where the distance in the long-time limit is finite and seems not to depend on the initial distance and the system size; a high-temperature one where the distance vanishes in the long-time limit. Using the finite size scaling method, the dynamical phase transition (damage spreading transition) temperature is obtained as for the Ising model.
基金Projects(51874071,52022019,51734005)supported by the National Natural Science Foundation of ChinaProject(161045)supported by the Fok Ying Tung Education Foundation for Yong Teachers in the Higher Education Institutions of China。
文摘Siderite,as an abundant iron ore,has not been effectively utilized,with a low utilization rate.In this study,the in-situ kinetics and mechanism of siderite during suspension magnetization roasting(SMR)were investigated to improve the selective conversion of siderite to magnetite and CO,enriching the theoretical system of green SMR using siderite as a reductant.According to the gas products analyses,the peak value of the reaction rate increased with increasing temperature,and its curves presented the feature of an early peak and long tail.The mechanism function of the siderite pyrolysis was the contraction sphere model(R_(3)):f(α)=3(1−α)2/3;E_(α)was 46.4653 kJ/mol;A was 0.5938 s^(−1);the kinetics equation was k=0.5938exp[−46.4653/(RT)].The in-situ HT-XRD results indicated that siderite was converted into magnetite and wüstite that exhibited a good crystallinity in SMR under a N_(2) atmosphere.At 620℃,the saturation magnetization(M_(s)),remanence magnetization(Mr),and coercivity(Hc)of the product peaked at 53.63×10^(-3)A·m^(2)/g,10.23×10^(-3)A·m^(2)/g,and 12.40×10^(3)A/m,respectively.Meanwhile,the initial particles with a smooth surface were transformed into particles with a porous and loose structure in the roasting process,which would contribute to reducing the grinding cost.
基金中国科学院知识创新工程项目,国家重点基础研究发展计划(973计划),the Important Pre-research Project,科技部资助项目
文摘The equations of state of spin-polarized nuclear matter and pure neutron matter are studied in the framework of the Brueckner–Hartree–Fock theory including a three-body force. The energy per nucleon E<SUB>A</SUB>(δ) calculated in the full range of spin polarization for symmetric nuclear matter and pure neutron matter fulfills a parabolic law. In both the cases the spin-symmetry energy is calculated as a function of the baryonic density along with the related quantities such as the magnetic susceptibility and the Landau parameter G<SUB>0</SUB>. The main effect of the three-body force is to strongly reduce the degenerate Fermi gas magnetic susceptibility even more than the value with only two-body force. The equation of state is monotonically increasing with the density for all spin-aligned configurations studied here so that no any signature is found for a spontaneous transition to a ferromagnetic state.
基金Projects(51471064,51301054)supported of the National Natural Science Foundation of ChinaProject(1253-NCET-009)supported by the Program for New Century Excellent Talents,China+1 种基金Project(1251G022)supported by Program for Youth Academic Backbone in Heilongjiang Provincial University,ChinaProject(12541138)supported by Scientific Research Fund of Heilongjiang Provincial Education Department,China
文摘The effects of partial substitution of Fe element for Ni element on the structure,martensitic transformation and mechanicalproperties of Ni50-xFexMn38Sn12(x=0and3%,molar fraction)ferromagnetic shape memory alloys were investigated.Experimentalresults indicate that by substitution of Fe for Ni,the microstructure and crystal structure of the alloys change at room temperature.Compared with Ni50Mn38Sn12alloy,the martensitic transformation starting temperature of Ni47Fe3Mn38Sn12alloy is decreased by32.5K.It is also found that martensitic transformation occurs over a broad temperature window from288.9to352.2K.It is found that themechanical properties of Ni-Mn-Sn alloy can be significantly improved by Fe addition.The Ni47Fe3Mn38Sn12alloy achieves amaximum compressive strength of855MPa with a fracture strain of11%.Moreover,the mechanism of the mechanical propertyimprovement is clarified.Fe doping changes the fracture type from intergranular fracture of Ni50Mn38Sn12alloy to transgranularcleavage fracture of Ni47Fe3Mn38Sn12alloys.
文摘The effects of Ce doping on the structure,optical,oxidation,thermal and magnetic properties of ZnS:Ce nanorods synthesized by a chemical co-precipitation method were reported.The crystalline phase transformation from cubic to hexagonal structure was observed upon doping ZnS with Ce.Magnetic measurements showed the existence of room temperature ferromagnetism in Ce-doped ZnS nanorods.X-ray photoelectron spectroscopic(XPS)measurements provided evidence for Zn-S bonds and oxidation state of Ce in the near-surface region.Raman spectrum provided evidence for the presence of defects as well as hexagonal structure of 5 wt.%Ce doped ZnS nanorods.Ce substitution induced shape evolution was studied by using TEM.DRS spectra further validated the incorporation of Ce^3+ions.The present study reveals that Ce doped ZnS nanorods may find applications in spintronic devices.
基金Supported by the National Natural Science Foundation of China under Grant Nos.10425521,10675007,10935001the Major State Basic Research Development Program under Grant No.G2007CB815000the Financial Support from China Postdoctoral Science Foundation No.20090460534
文摘We study the influence of the chiral phase transition on the chiral magnetic effect. The azimuthal charge-particle correlations as functions of the temperature are calculated. It is found that there is a pronounced cusp in the correlations as the temperature reaches its critical value for the QCD phase transition. It is predicted that there will be a drastic suppression of the charge-particle correlations as the collision energy in RHIC decreases to below a critical value. We show then the azimuthal charge-particle correlations can be the signal to identify the occurrence of the QCD phase transitions in RHIC energy scan experiments.
基金The project supported by Shanghai Leading Academic Discipline Project under Grant No. T0104
文摘Using the effective-field theory we studied the magnetic properties of a spin-1/2 Ising supedattice, which consist of three different ferromagnet materials. The magnetic behavior of this superlattice is examined. The critical temperature and the compensation temprature of the system are studied as a function of the exchange interactions between the nearest-neiboring spins across the interface and in the intraface. Temperature dependence of magenetizations is also given.