Transformers are normally designed and built for use at rated frequency and sinusoidal load current. A non-linear load on a transformer leads to harmonic power losses which cause increased operational costs and additi...Transformers are normally designed and built for use at rated frequency and sinusoidal load current. A non-linear load on a transformer leads to harmonic power losses which cause increased operational costs and additional heating in transformer parts. It leads to higher losses, early fatigue of insulation, premature failure and reduction of the useful life of the transformer. To prevent these problems, the rated capacity of transformer which supplies harmonic loads must be reduced. In this work, a typical 50 kVA three-phase distribution transformer with real practical parameters is taken under non-linear loads generated due to domestic loads. The core losses is evaluated using the three dimensional model of the transformer developed in FEM (finite element method) program based on valid model of transformer under high harmonic conditions. And finally a relation associated with core losses and amplitude of high harmonic order are reviewed & analyzed and then a comparison is being carried out on the results obtained by different excitation current in transformer windings.展开更多
文摘Transformers are normally designed and built for use at rated frequency and sinusoidal load current. A non-linear load on a transformer leads to harmonic power losses which cause increased operational costs and additional heating in transformer parts. It leads to higher losses, early fatigue of insulation, premature failure and reduction of the useful life of the transformer. To prevent these problems, the rated capacity of transformer which supplies harmonic loads must be reduced. In this work, a typical 50 kVA three-phase distribution transformer with real practical parameters is taken under non-linear loads generated due to domestic loads. The core losses is evaluated using the three dimensional model of the transformer developed in FEM (finite element method) program based on valid model of transformer under high harmonic conditions. And finally a relation associated with core losses and amplitude of high harmonic order are reviewed & analyzed and then a comparison is being carried out on the results obtained by different excitation current in transformer windings.