In this study, poly(y-glutamic acid)-coated Fe3O4 magnetic nanoparticles (y-PGA/Fe304 MNPs) were successfully fabricated using the co-precipitation method. Fe3O4 MNPs were also prepared for comparison. The av erag...In this study, poly(y-glutamic acid)-coated Fe3O4 magnetic nanoparticles (y-PGA/Fe304 MNPs) were successfully fabricated using the co-precipitation method. Fe3O4 MNPs were also prepared for comparison. The av erage size and specific surface area results reveal that 7-PGA/Fe304 MNPs (52.4 nm, 88.41 m2.g-1) have smaller particle size and larger specific surface area_ than Fe3O4 MNPs (62.0 nm, 76.83 mLg-1). The y-PGA/Fe3O4 MNPs展开更多
A novel iron sulphide adsorbent using magnetite embedded with nanosized Fe3O4 was prepared and applied to separation lanthanum (Ⅲ) from aqueous solution. This adsorbent combines the advantages of magnetic nanoparti...A novel iron sulphide adsorbent using magnetite embedded with nanosized Fe3O4 was prepared and applied to separation lanthanum (Ⅲ) from aqueous solution. This adsorbent combines the advantages of magnetic nanoparticle with magnetic separability and high affinity toward rare earth metals, which provides distinctive merits including easy preparation, high adsorption capacity, easy isolation from sample solutions by the application of an external magnetic field. The adsorption behaviors of lanthanum (Ⅲ) from an aqueous medium, using iron sulphide magnetite nanoparticles were studied using equilibrium batch and column flow techniques. The effect ofpH, contents of loaded iron sulphide nanoparticles, ionic strength, adsorbent dose, contact time, and temperature on adsorption capacity of the magnetic beads was investigated. All of the results suggested that the FeS/Fe3O4 Nanoparticles could be excellent adsorbents for La(Ⅲ) contaminated water treatment.展开更多
Monodisperse and size-tunable magnetic iron oxide nanoparticles (NPs) have been synthesized by thermal decomposition of an iron oleate complex at 310 ℃ in the presence of oleylamine and oleic acid. The diameters of...Monodisperse and size-tunable magnetic iron oxide nanoparticles (NPs) have been synthesized by thermal decomposition of an iron oleate complex at 310 ℃ in the presence of oleylamine and oleic acid. The diameters of the as-synthesized iron oxide NPs decrease with increasing concentrations of iron oleate complex and oleic acid/oleylamine. In addition, the size-dependent crystallinity and magnetic properties of iron oxide NPs are presented. It is found that larger iron oxide NPs have a higher degree of crystallinity and saturation magnetization. More importantly, various M-iron oxide heterostructures (M = Au, Ag, Pt, Pd) have been successfully fabricated by using the same synthesis procedure. The iron oxide NPs are grown over the pre-made metal seeds through a seed-mediated growth process. The physicochemical properties of Au-Fe3O4 heterostructures have been characterized by X-ray diffraction (XRD), superconducting quantum interference device (SQUID) magnetometry and UV-vis spectroscopy. The as-synthesized Au-Fe3O4 heterostructures show a red-shift in surface plasmon resonance peak compared with Au NPs and similar magnetic properties to Fe3O4 NPs. The heterojunction effects present in such nanostructures offer the opportunity to tune the irphysicochemical properties. Therefore, this synthesis process can be regarded as an efficient way to fabricate a series of heterostructures for a variety of applications.展开更多
Spirulina platensis were chosen as templates to produce microscopic helical soft-core magnetic particles by way of depositing ferromagnetic alloy onto their surface using electroplating technique,and the process of el...Spirulina platensis were chosen as templates to produce microscopic helical soft-core magnetic particles by way of depositing ferromagnetic alloy onto their surface using electroplating technique,and the process of electroplating ferromagnetic alloy onto microorganism cells was studied.The morphology and appearance of the coated Spirulina platensis were analyzed with optical microscopy and scanning electron microscopy,respectively,and the ingredients and phase structure of the alloy coating were analyzed with energy dispersive X-ray detector(EDX) and X-ray diffractive analysis(XRD),respectively.The result showed that the particles were successfully coated with uniform metal coating and their initial helical shape was perfectly replicated.The coating was NiFe alloy,and its phase structure was face-centered cubic structure.The magnetic properties of the coated particles were tested with vibrating sample magnetometer(VSM),and the result showed that the particles were ferro-magnetic,which means the magnetic electroplating of the microorganism cells was successfully achieved.The electrochemical reaction mechanism of the magnetic plating process was also analyzed;the result showed that the deposition of NiFe on the microorganism cells was anomalous codeposition,and that Fe2+ ion was preferential deposited when magnetic stirring was applied.展开更多
Dispersion of metal particles in fluids can be used to manufacture magnetorheologic fluids(MRF).Properties of these dispersion systems are mainly determined by the arrangements and contacts among particles.In this pap...Dispersion of metal particles in fluids can be used to manufacture magnetorheologic fluids(MRF).Properties of these dispersion systems are mainly determined by the arrangements and contacts among particles.In this paper,particles with smaller sizes than those in the target dispersion system are added using iron particles dispersed in silicon oil as a model to control the arrangements and contacts.The result suggests that these small-sized particles have a significant effect on the viscoelastic properties of the dispersion.The maximum packing density and the fluid viscosity depend mainly on the adhesion of small particles,which is directly related to the fraction of small particles in the model dispersion system.Under a magnetic field,the yield stress of the dispersion system is proportional to the concentration of iron particles,suggesting that the yield stress relies directly on the presence of small particles.These small particles in the fluid determine the difference in stress of the magnetorheological fluid(MRF) with or without a magnetic field.展开更多
基金Supported by the National Natural Science Foundation of China (21276124), the Research Project of Natural Science for Universities Affiliated to Jiangsu Province (10KJB530002), Key Projects in the National Science & Technology Pillar Pro-gram (2011BAE07B09-3), the Jiangsu Provincial Science and Technology Support Program (BE2011831), and the State High Technology Research and Development Prograr of China (2011AA02A201).
文摘In this study, poly(y-glutamic acid)-coated Fe3O4 magnetic nanoparticles (y-PGA/Fe304 MNPs) were successfully fabricated using the co-precipitation method. Fe3O4 MNPs were also prepared for comparison. The av erage size and specific surface area results reveal that 7-PGA/Fe304 MNPs (52.4 nm, 88.41 m2.g-1) have smaller particle size and larger specific surface area_ than Fe3O4 MNPs (62.0 nm, 76.83 mLg-1). The y-PGA/Fe3O4 MNPs
文摘A novel iron sulphide adsorbent using magnetite embedded with nanosized Fe3O4 was prepared and applied to separation lanthanum (Ⅲ) from aqueous solution. This adsorbent combines the advantages of magnetic nanoparticle with magnetic separability and high affinity toward rare earth metals, which provides distinctive merits including easy preparation, high adsorption capacity, easy isolation from sample solutions by the application of an external magnetic field. The adsorption behaviors of lanthanum (Ⅲ) from an aqueous medium, using iron sulphide magnetite nanoparticles were studied using equilibrium batch and column flow techniques. The effect ofpH, contents of loaded iron sulphide nanoparticles, ionic strength, adsorbent dose, contact time, and temperature on adsorption capacity of the magnetic beads was investigated. All of the results suggested that the FeS/Fe3O4 Nanoparticles could be excellent adsorbents for La(Ⅲ) contaminated water treatment.
文摘Monodisperse and size-tunable magnetic iron oxide nanoparticles (NPs) have been synthesized by thermal decomposition of an iron oleate complex at 310 ℃ in the presence of oleylamine and oleic acid. The diameters of the as-synthesized iron oxide NPs decrease with increasing concentrations of iron oleate complex and oleic acid/oleylamine. In addition, the size-dependent crystallinity and magnetic properties of iron oxide NPs are presented. It is found that larger iron oxide NPs have a higher degree of crystallinity and saturation magnetization. More importantly, various M-iron oxide heterostructures (M = Au, Ag, Pt, Pd) have been successfully fabricated by using the same synthesis procedure. The iron oxide NPs are grown over the pre-made metal seeds through a seed-mediated growth process. The physicochemical properties of Au-Fe3O4 heterostructures have been characterized by X-ray diffraction (XRD), superconducting quantum interference device (SQUID) magnetometry and UV-vis spectroscopy. The as-synthesized Au-Fe3O4 heterostructures show a red-shift in surface plasmon resonance peak compared with Au NPs and similar magnetic properties to Fe3O4 NPs. The heterojunction effects present in such nanostructures offer the opportunity to tune the irphysicochemical properties. Therefore, this synthesis process can be regarded as an efficient way to fabricate a series of heterostructures for a variety of applications.
基金supported by the National High Technology Research and Development Program of China (Grant No 2009AA043804)Foundation for the Author of National Excellent Doctoral Dissertation of PR China (Grant No 2007B32)
文摘Spirulina platensis were chosen as templates to produce microscopic helical soft-core magnetic particles by way of depositing ferromagnetic alloy onto their surface using electroplating technique,and the process of electroplating ferromagnetic alloy onto microorganism cells was studied.The morphology and appearance of the coated Spirulina platensis were analyzed with optical microscopy and scanning electron microscopy,respectively,and the ingredients and phase structure of the alloy coating were analyzed with energy dispersive X-ray detector(EDX) and X-ray diffractive analysis(XRD),respectively.The result showed that the particles were successfully coated with uniform metal coating and their initial helical shape was perfectly replicated.The coating was NiFe alloy,and its phase structure was face-centered cubic structure.The magnetic properties of the coated particles were tested with vibrating sample magnetometer(VSM),and the result showed that the particles were ferro-magnetic,which means the magnetic electroplating of the microorganism cells was successfully achieved.The electrochemical reaction mechanism of the magnetic plating process was also analyzed;the result showed that the deposition of NiFe on the microorganism cells was anomalous codeposition,and that Fe2+ ion was preferential deposited when magnetic stirring was applied.
基金supported by the Central University Basic Research and Operating Expenses (Grant No. YWF-10-03-019, YWF-11-03-H-005, YWF-11-04-009)the Scientific Research Foundation for Returned Overseas Chinese Scholars, State Education Ministry
文摘Dispersion of metal particles in fluids can be used to manufacture magnetorheologic fluids(MRF).Properties of these dispersion systems are mainly determined by the arrangements and contacts among particles.In this paper,particles with smaller sizes than those in the target dispersion system are added using iron particles dispersed in silicon oil as a model to control the arrangements and contacts.The result suggests that these small-sized particles have a significant effect on the viscoelastic properties of the dispersion.The maximum packing density and the fluid viscosity depend mainly on the adhesion of small particles,which is directly related to the fraction of small particles in the model dispersion system.Under a magnetic field,the yield stress of the dispersion system is proportional to the concentration of iron particles,suggesting that the yield stress relies directly on the presence of small particles.These small particles in the fluid determine the difference in stress of the magnetorheological fluid(MRF) with or without a magnetic field.