Poly(OT-co-AN)/Ba0.8La0.2Al2Fe10O19 (Poly(OT-co-AN)/BLAF) composites were fabricated by in situ polymerization method. It was investigated that of mass rate of momomer (mor/mAN), polymeration temperature and t...Poly(OT-co-AN)/Ba0.8La0.2Al2Fe10O19 (Poly(OT-co-AN)/BLAF) composites were fabricated by in situ polymerization method. It was investigated that of mass rate of momomer (mor/mAN), polymeration temperature and time, and feeding ratio of BLAF effect on the structures, morphology, conductivity, magnetic property of composites by the orthogonal optimum design. The results indicated that poly (OT-co-AN) copolymer had a better coating on BLAF particles, and there were some interactions between components in the composites. The magnetic properties of the composites were related to content of the magnetic BLAF particles in it. The feeding ratio of BLAF had a significant influence on constitute and conductivity of the composites, followed by the temperature. The reflection loss and the effective bandwidth of composites for electromagnetic wave were at- tributed to the synergistic effect between poly(OT-co-AN) and BLAF. The poly(OT-co-AN)/BLAF composites with mass ratio of BLAF to mix monomer (moT^mAN =1:1) equal to 5/1 at 10 h in 25~C had a maximum synergistic effect between its compo- nents, showed a maximum reflection loss of -26.94 dB at 14.10 GHz and an available bandwidth of 8.54 GHz. It was sug- gested that the composites can be used as a advancing absorption and shielding materials for electromagnetic wave due to their favorable microwave absorption properties.展开更多
High-temperature superconductors in superconductor apparatuses are subjected to mechanical strains under operating conditions.These strains cause the degradation of the critical current densities and influence AC loss...High-temperature superconductors in superconductor apparatuses are subjected to mechanical strains under operating conditions.These strains cause the degradation of the critical current densities and influence AC losses in the superconductors.Based on the dynamic process of thermomagnetic interaction,we report the results of numerical analysis of AC losses in an infinite high-temperature superconducting slab subjected to a uniform in-plane strain in an alternating external magnetic field parallel to the sample surface.The numerical analysis shows the details of electromagnetic phenomena in the slab and the dependences of AC loss on various external parameters including the uniform strain in the slab and the amplitude and frequency of the external magnetic field.In this paper,we find that whether the magnetic field fully penetrates the superconductor is the key factor that influences the features of AC loss.When the magnetic field cannot fully penetrate the superconductor,the loss rises with increasing strain or decreasing frequency.When the magnetic field can fully penetrate the superconductor,the feature is just opposite.We also analyze the effects of periodic strain on AC loss.It is interesting to find that when the periodic strain frequency equals the external magnetic field frequency,the AC loss reaches the maximum,regardless if the magnetic field fully penetrates the superconductor or not.展开更多
Manganese selenide (MnSe) possesses unique magnetic properties as an important magnetic semiconductor, but the synthesis and properties of MnSe nanocrystals are less developed compared to other semiconductor nanocry...Manganese selenide (MnSe) possesses unique magnetic properties as an important magnetic semiconductor, but the synthesis and properties of MnSe nanocrystals are less developed compared to other semiconductor nanocrystals because of the inability to obtain high-quality MnSe, especially in the metastable wurtzite structure. Here, we have successfully fabricated wurtzite MnSe nanocrystals via a colloidal approach which affords uniform crystal sizes and tailored shapes. The selective binding strength of the amine surfactant is the determining factor in shape-control and shape-evolution. Bullet-shapes could be transformed into shuttle-shapes if part of the oleylamine in the reaction solution was replaced by trioctylamine, and tetrapod-shaped nanocrystals could be formed in trioctylamine systems. The three-dimensional (3D) structure of the bullet-shaped nanorods has been demonstrated by the advanced transmission electron microscope (TEM) 3D-tomography technology. High-resolution TEM (HRTEM) and electron energy-loss spectroscopy (EELS) show that planar-defect structures such as stacking faults and twinning along the [001] direction arise during the growth of bullet-shapes. On the basis of careful HRTEM observations, we propose a "quadra-twin core" growth mechanism for the formation of wurtzite MnSe nanotetrapods. Furthermore, the wurtzite MnSe nanocrystals show low- temperature surface spin-glass behavior due to their noncompensated surface spins and the blocking temperatures increase from 8.4 K to 18.5 K with increasing surface area/volume ratio of the nanocrystals. Our results provide a systematic study of wurtzite MnSe nanocrystals.展开更多
基金supported by the National Nature Science Foundation of China (Grant No.21071125)the Natural Science Foundation of Zhejiang Province (Grant Nos.Y4100022,Y4090636)the Science and Technology Key Project of Zhejiang Province (Grant No.2010C11053)
文摘Poly(OT-co-AN)/Ba0.8La0.2Al2Fe10O19 (Poly(OT-co-AN)/BLAF) composites were fabricated by in situ polymerization method. It was investigated that of mass rate of momomer (mor/mAN), polymeration temperature and time, and feeding ratio of BLAF effect on the structures, morphology, conductivity, magnetic property of composites by the orthogonal optimum design. The results indicated that poly (OT-co-AN) copolymer had a better coating on BLAF particles, and there were some interactions between components in the composites. The magnetic properties of the composites were related to content of the magnetic BLAF particles in it. The feeding ratio of BLAF had a significant influence on constitute and conductivity of the composites, followed by the temperature. The reflection loss and the effective bandwidth of composites for electromagnetic wave were at- tributed to the synergistic effect between poly(OT-co-AN) and BLAF. The poly(OT-co-AN)/BLAF composites with mass ratio of BLAF to mix monomer (moT^mAN =1:1) equal to 5/1 at 10 h in 25~C had a maximum synergistic effect between its compo- nents, showed a maximum reflection loss of -26.94 dB at 14.10 GHz and an available bandwidth of 8.54 GHz. It was sug- gested that the composites can be used as a advancing absorption and shielding materials for electromagnetic wave due to their favorable microwave absorption properties.
基金supported by the National Natural Science Foundation of China(Grant Nos.11032006,11121202 and 11202087)National Key Project of Magneto-Constrained Fusion Energy Development Program(Grant No.2013GB110002)
文摘High-temperature superconductors in superconductor apparatuses are subjected to mechanical strains under operating conditions.These strains cause the degradation of the critical current densities and influence AC losses in the superconductors.Based on the dynamic process of thermomagnetic interaction,we report the results of numerical analysis of AC losses in an infinite high-temperature superconducting slab subjected to a uniform in-plane strain in an alternating external magnetic field parallel to the sample surface.The numerical analysis shows the details of electromagnetic phenomena in the slab and the dependences of AC loss on various external parameters including the uniform strain in the slab and the amplitude and frequency of the external magnetic field.In this paper,we find that whether the magnetic field fully penetrates the superconductor is the key factor that influences the features of AC loss.When the magnetic field cannot fully penetrate the superconductor,the loss rises with increasing strain or decreasing frequency.When the magnetic field can fully penetrate the superconductor,the feature is just opposite.We also analyze the effects of periodic strain on AC loss.It is interesting to find that when the periodic strain frequency equals the external magnetic field frequency,the AC loss reaches the maximum,regardless if the magnetic field fully penetrates the superconductor or not.
文摘Manganese selenide (MnSe) possesses unique magnetic properties as an important magnetic semiconductor, but the synthesis and properties of MnSe nanocrystals are less developed compared to other semiconductor nanocrystals because of the inability to obtain high-quality MnSe, especially in the metastable wurtzite structure. Here, we have successfully fabricated wurtzite MnSe nanocrystals via a colloidal approach which affords uniform crystal sizes and tailored shapes. The selective binding strength of the amine surfactant is the determining factor in shape-control and shape-evolution. Bullet-shapes could be transformed into shuttle-shapes if part of the oleylamine in the reaction solution was replaced by trioctylamine, and tetrapod-shaped nanocrystals could be formed in trioctylamine systems. The three-dimensional (3D) structure of the bullet-shaped nanorods has been demonstrated by the advanced transmission electron microscope (TEM) 3D-tomography technology. High-resolution TEM (HRTEM) and electron energy-loss spectroscopy (EELS) show that planar-defect structures such as stacking faults and twinning along the [001] direction arise during the growth of bullet-shapes. On the basis of careful HRTEM observations, we propose a "quadra-twin core" growth mechanism for the formation of wurtzite MnSe nanotetrapods. Furthermore, the wurtzite MnSe nanocrystals show low- temperature surface spin-glass behavior due to their noncompensated surface spins and the blocking temperatures increase from 8.4 K to 18.5 K with increasing surface area/volume ratio of the nanocrystals. Our results provide a systematic study of wurtzite MnSe nanocrystals.