The control platform of the induction motor (IM) with low costs is developed by using DSP MC56F8013 with a good performance/price rtaio. The control algorithm for the speed sensorless IM is studied based on the stat...The control platform of the induction motor (IM) with low costs is developed by using DSP MC56F8013 with a good performance/price rtaio. The control algorithm for the speed sensorless IM is studied based on the stator flux orientation (SFO). The algorithm structure is simple to be implemented and cannot be influenced by motor parameters, The improved stator flux estimation is used to compensate errors caused by the low pass filter (LPF). A new speed regulator is designed to ensure the system working with the maximal torque in the transient state. The system simulation and the prototype experiment are made. Results show that the con- trol system has good dynamic and static performance.展开更多
A novel double extended state observers(ESOs)-based field-oriented control(FOC)strategy is developed for three-phase permanent magnet synchronous motor(PMSM)drive systems without any phase current sensor.In principle,...A novel double extended state observers(ESOs)-based field-oriented control(FOC)strategy is developed for three-phase permanent magnet synchronous motor(PMSM)drive systems without any phase current sensor.In principle,two current sensors are essential parts of the drive system for implementation of the feedback to achieve high accuracy control.For this purpose,the double ESOs are created to provide feedback stator currents instead of actual current sensors.The first one of the double ESOs is designed to estimate the benchmark value of q-axis stator current,which is a primary premise;While the second is designed to estimate real-time stator currents of d-axis and q-axis simultaneously.The resultant double ESOs can rapidly and accurately give estimation of the actual currents of a-axis,b-axis and c-axis,and the synthesized double ESOs-based FOC strategy for PMSM drive system without any current sensors has satisfactory control performance and strong robustness.Numerical experiments validate the feasibility and effectiveness of the proposed scheme.展开更多
An approach of position sensorless control for permanent magnet synchronous motor ( PMSM ) is put forward based on a sliding mode observer. The mathematical model of PMSM in a stationary αβ reference frame is adop...An approach of position sensorless control for permanent magnet synchronous motor ( PMSM ) is put forward based on a sliding mode observer. The mathematical model of PMSM in a stationary αβ reference frame is adopted, and the system is controlled by the digital signal processor ( DSP; TMS320LF2407 according to the control achieve closed loop operation of the motor, the stator theory of sliding mode observer. In order to magnetic field should be vertical with the rotor magnetic field and be synchronous with rotor rotating, so the position and speed of PMSM is estimated in real time and the estimated position is modified continuously. The simulation results indicate that the proposed observer has high precision is more robust to the parametric variation and load in estimation of PMSM position and speed, and torque disturbance.展开更多
A speed-sensorless vector control system for induction machines (IMs)is presented, According to the vector control theory of IMs, the rotor flux is estimated based on a flux observer,and the speed is estimated throu...A speed-sensorless vector control system for induction machines (IMs)is presented, According to the vector control theory of IMs, the rotor flux is estimated based on a flux observer,and the speed is estimated through the method of q-axis rotor flux converging on zero with proportional integral regulator, A 0.75 kW,50 Hz,two-pole induction machine was used in the simulation and experimental verification, The simulation model was constructed in Matlab. A series of tests were performed in the field weakening region, for both no-load and loaded operation. The estimated speed tracks the actual speed well in the based speed region and field weakening region ( 1 per unit value to 4 per unit value). The small estimation error of residual speed is due to the existence of slip.展开更多
This paper presents a sliding mode observer for sensorless operation of SRM (switched reluctance motor) drive. Design of such an observer depends mainly on the nonlinear model of SRM. In this technique, neither extr...This paper presents a sliding mode observer for sensorless operation of SRM (switched reluctance motor) drive. Design of such an observer depends mainly on the nonlinear model of SRM. In this technique, neither extra hardware nor huge memory space are not required but it only requires active phase measurements. Furthermore, PI (proportional integral) and adaptive FLPI (fuzzy logic PI) controllers are suggested to operate individually along with the SMO (sliding mode observer) to cover a full speed range of sensorless controller. Both controller schemes operate in PWM (pulse width modulation) control mode. The proposed observer is implemented and tested using a digital signal processor. All results obtained with both simulation and experimental investigations corroborate the superior performance of the adaptive fuzzy logic controller (FLPI) when compared with those of PI controller.展开更多
文摘The control platform of the induction motor (IM) with low costs is developed by using DSP MC56F8013 with a good performance/price rtaio. The control algorithm for the speed sensorless IM is studied based on the stator flux orientation (SFO). The algorithm structure is simple to be implemented and cannot be influenced by motor parameters, The improved stator flux estimation is used to compensate errors caused by the low pass filter (LPF). A new speed regulator is designed to ensure the system working with the maximal torque in the transient state. The system simulation and the prototype experiment are made. Results show that the con- trol system has good dynamic and static performance.
基金National Natural Science Foundation of China(No.61463025)Opening Foundation of Key Laboratory of Opto-technology and Intelligent Control(Lanzhou Jiaotong University),Ministry of Education(No.KFKT2018-8)Program for Excellent Team of Scientific Research in Lanzhou Jiaotong University(No.201701)
文摘A novel double extended state observers(ESOs)-based field-oriented control(FOC)strategy is developed for three-phase permanent magnet synchronous motor(PMSM)drive systems without any phase current sensor.In principle,two current sensors are essential parts of the drive system for implementation of the feedback to achieve high accuracy control.For this purpose,the double ESOs are created to provide feedback stator currents instead of actual current sensors.The first one of the double ESOs is designed to estimate the benchmark value of q-axis stator current,which is a primary premise;While the second is designed to estimate real-time stator currents of d-axis and q-axis simultaneously.The resultant double ESOs can rapidly and accurately give estimation of the actual currents of a-axis,b-axis and c-axis,and the synthesized double ESOs-based FOC strategy for PMSM drive system without any current sensors has satisfactory control performance and strong robustness.Numerical experiments validate the feasibility and effectiveness of the proposed scheme.
文摘An approach of position sensorless control for permanent magnet synchronous motor ( PMSM ) is put forward based on a sliding mode observer. The mathematical model of PMSM in a stationary αβ reference frame is adopted, and the system is controlled by the digital signal processor ( DSP; TMS320LF2407 according to the control achieve closed loop operation of the motor, the stator theory of sliding mode observer. In order to magnetic field should be vertical with the rotor magnetic field and be synchronous with rotor rotating, so the position and speed of PMSM is estimated in real time and the estimated position is modified continuously. The simulation results indicate that the proposed observer has high precision is more robust to the parametric variation and load in estimation of PMSM position and speed, and torque disturbance.
文摘A speed-sensorless vector control system for induction machines (IMs)is presented, According to the vector control theory of IMs, the rotor flux is estimated based on a flux observer,and the speed is estimated through the method of q-axis rotor flux converging on zero with proportional integral regulator, A 0.75 kW,50 Hz,two-pole induction machine was used in the simulation and experimental verification, The simulation model was constructed in Matlab. A series of tests were performed in the field weakening region, for both no-load and loaded operation. The estimated speed tracks the actual speed well in the based speed region and field weakening region ( 1 per unit value to 4 per unit value). The small estimation error of residual speed is due to the existence of slip.
文摘This paper presents a sliding mode observer for sensorless operation of SRM (switched reluctance motor) drive. Design of such an observer depends mainly on the nonlinear model of SRM. In this technique, neither extra hardware nor huge memory space are not required but it only requires active phase measurements. Furthermore, PI (proportional integral) and adaptive FLPI (fuzzy logic PI) controllers are suggested to operate individually along with the SMO (sliding mode observer) to cover a full speed range of sensorless controller. Both controller schemes operate in PWM (pulse width modulation) control mode. The proposed observer is implemented and tested using a digital signal processor. All results obtained with both simulation and experimental investigations corroborate the superior performance of the adaptive fuzzy logic controller (FLPI) when compared with those of PI controller.