Effective spin-polarized injection from magnetic semiconductor (MS) to nonmagnetic semiconductor (NMS) has been highlighted in recent years. In this paper we study theoretically the dependence of nonequilibrium sp...Effective spin-polarized injection from magnetic semiconductor (MS) to nonmagnetic semiconductor (NMS) has been highlighted in recent years. In this paper we study theoretically the dependence of nonequilibrium spin polarization (NESP) in NMS during spin-polarized injection through the magnetic p-n junction. Based on the theory in semiconductor physics, a model is established and the boundary conditions are determined in the case of no external spin-polarized injection and low bias. The control parameters that may influence the NESP in NMS are indicated by calculating the distribution of spin polarization. They are the doping concentrations, the equilibrium spin polarization in MS and the bias. The effective spin-polarized injection can be realized more easily by optimizing the above parameters.展开更多
Manganese selenide (MnSe) possesses unique magnetic properties as an important magnetic semiconductor, but the synthesis and properties of MnSe nanocrystals are less developed compared to other semiconductor nanocry...Manganese selenide (MnSe) possesses unique magnetic properties as an important magnetic semiconductor, but the synthesis and properties of MnSe nanocrystals are less developed compared to other semiconductor nanocrystals because of the inability to obtain high-quality MnSe, especially in the metastable wurtzite structure. Here, we have successfully fabricated wurtzite MnSe nanocrystals via a colloidal approach which affords uniform crystal sizes and tailored shapes. The selective binding strength of the amine surfactant is the determining factor in shape-control and shape-evolution. Bullet-shapes could be transformed into shuttle-shapes if part of the oleylamine in the reaction solution was replaced by trioctylamine, and tetrapod-shaped nanocrystals could be formed in trioctylamine systems. The three-dimensional (3D) structure of the bullet-shaped nanorods has been demonstrated by the advanced transmission electron microscope (TEM) 3D-tomography technology. High-resolution TEM (HRTEM) and electron energy-loss spectroscopy (EELS) show that planar-defect structures such as stacking faults and twinning along the [001] direction arise during the growth of bullet-shapes. On the basis of careful HRTEM observations, we propose a "quadra-twin core" growth mechanism for the formation of wurtzite MnSe nanotetrapods. Furthermore, the wurtzite MnSe nanocrystals show low- temperature surface spin-glass behavior due to their noncompensated surface spins and the blocking temperatures increase from 8.4 K to 18.5 K with increasing surface area/volume ratio of the nanocrystals. Our results provide a systematic study of wurtzite MnSe nanocrystals.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No 60606021), the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No 20060003067) and the Key Fundamental Research Foundation of Tsinghua University of China (Grant No Jz2001010).
文摘Effective spin-polarized injection from magnetic semiconductor (MS) to nonmagnetic semiconductor (NMS) has been highlighted in recent years. In this paper we study theoretically the dependence of nonequilibrium spin polarization (NESP) in NMS during spin-polarized injection through the magnetic p-n junction. Based on the theory in semiconductor physics, a model is established and the boundary conditions are determined in the case of no external spin-polarized injection and low bias. The control parameters that may influence the NESP in NMS are indicated by calculating the distribution of spin polarization. They are the doping concentrations, the equilibrium spin polarization in MS and the bias. The effective spin-polarized injection can be realized more easily by optimizing the above parameters.
文摘Manganese selenide (MnSe) possesses unique magnetic properties as an important magnetic semiconductor, but the synthesis and properties of MnSe nanocrystals are less developed compared to other semiconductor nanocrystals because of the inability to obtain high-quality MnSe, especially in the metastable wurtzite structure. Here, we have successfully fabricated wurtzite MnSe nanocrystals via a colloidal approach which affords uniform crystal sizes and tailored shapes. The selective binding strength of the amine surfactant is the determining factor in shape-control and shape-evolution. Bullet-shapes could be transformed into shuttle-shapes if part of the oleylamine in the reaction solution was replaced by trioctylamine, and tetrapod-shaped nanocrystals could be formed in trioctylamine systems. The three-dimensional (3D) structure of the bullet-shaped nanorods has been demonstrated by the advanced transmission electron microscope (TEM) 3D-tomography technology. High-resolution TEM (HRTEM) and electron energy-loss spectroscopy (EELS) show that planar-defect structures such as stacking faults and twinning along the [001] direction arise during the growth of bullet-shapes. On the basis of careful HRTEM observations, we propose a "quadra-twin core" growth mechanism for the formation of wurtzite MnSe nanotetrapods. Furthermore, the wurtzite MnSe nanocrystals show low- temperature surface spin-glass behavior due to their noncompensated surface spins and the blocking temperatures increase from 8.4 K to 18.5 K with increasing surface area/volume ratio of the nanocrystals. Our results provide a systematic study of wurtzite MnSe nanocrystals.