On the basis of the current sheet model, a new analytical solution for permanent magnet (PM) bearings is developed. Compared with analytical methods based on the coupling energy model and the magnetic dipole model, ...On the basis of the current sheet model, a new analytical solution for permanent magnet (PM) bearings is developed. Compared with analytical methods based on the coupling energy model and the magnetic dipole model, the proposed one is more physically intuitive and convenient for engineering designers. According to the analytical model, the thrust characteristics of a novel PM thrust bearing is studied and verified by finite element analysis (FEA). In the proposed thrust bearing configuration, the rotor is composed of stacked PM tings with alternative axial magnetization directions, and the stator with alternative radial magnetization directions while copper rings are used to separate adjacent PM rings. A prototype PM thrust bearing with the proposed configuration is designed and fabricated. The performances of the PM thrust beating are experimentally validated. It is shown that the calculation accuracy of the presented analytical solution is satisfying.展开更多
基金Project (No.2006AA05Z201) supported by the National Hi-Tech Research and Development (863) Program of China
文摘On the basis of the current sheet model, a new analytical solution for permanent magnet (PM) bearings is developed. Compared with analytical methods based on the coupling energy model and the magnetic dipole model, the proposed one is more physically intuitive and convenient for engineering designers. According to the analytical model, the thrust characteristics of a novel PM thrust bearing is studied and verified by finite element analysis (FEA). In the proposed thrust bearing configuration, the rotor is composed of stacked PM tings with alternative axial magnetization directions, and the stator with alternative radial magnetization directions while copper rings are used to separate adjacent PM rings. A prototype PM thrust bearing with the proposed configuration is designed and fabricated. The performances of the PM thrust beating are experimentally validated. It is shown that the calculation accuracy of the presented analytical solution is satisfying.