The exchange bias (EB) has been investigated in magnetic materials with the ferromagnetic (FM)/antiferromagnetic (AFM) contacting interfaces for more than half a century. To date, the significant progress has be...The exchange bias (EB) has been investigated in magnetic materials with the ferromagnetic (FM)/antiferromagnetic (AFM) contacting interfaces for more than half a century. To date, the significant progress has been made in the layered magnetic FM/AFM thin film systems. EB mechanisms have shown substantive research advances. Here some of the new advances are introduced and discussed with the emphasis on the influence of AFlVl layer, the interlayer EB coupling across nonmagnetic spacer, and the interlayer coupling across AFlVl layer, as well as EB related to multiferrioc materials and electrical control.展开更多
Manipulation of antiferromagnetic(AFM) spins by electrical means is on great demand to develop the AFM spintronics with low power consumption. Here we report a reversible electrical control of antiferromagnetic moment...Manipulation of antiferromagnetic(AFM) spins by electrical means is on great demand to develop the AFM spintronics with low power consumption. Here we report a reversible electrical control of antiferromagnetic moments of FeMn up to 15 nm, using an ionic liquid to exert a substantial electric-field effect. The manipulation is demonstrated by the modulation of exchange spring in[Co/Pt]/FeMn system, where AFM moments in FeMn pin the magnetization rotation of Co/Pt. By carrier injection or extraction,the magnetic anisotropy of the top layer in FeMn is modulated to influence the whole exchange spring and then passes its influence to the [Co/Pt]/FeMn interface, through a distance up to the length of exchange spring that fully screens electric field. Comparing FeMn to IrMn, despite the opposite dependence of exchange bias on gate voltages, the same correlation between carrier density and exchange spring stiffness is demonstrated. Besides the fundamental significance of modulating the spin structures in metallic AFM via all-electrical fashion, the present finding would advance the development of low-power-consumption AFM spintronics.展开更多
Detailed unsteady numerical simulation has been carried out to investigate the mechanism of adjacent syntheticjets and the influence of different phases on the mixing of coaxial jets. The results show the combined jet...Detailed unsteady numerical simulation has been carried out to investigate the mechanism of adjacent syntheticjets and the influence of different phases on the mixing of coaxial jets. The results show the combined jet, formedby coupling the vortex pairs at the orifice of two adjacent actuators, can exhibit better controlling effect. Spanwisepressure difference appears because of the existence of phase difference between the left jet and right jet, whichresults in the variation of the combined jet. When the phase difference is greater than zero, mixing enhancementof coaxial jets can be achieved, but there are maximum phase difference and optimal phase difference. On thecontrary, application of adjacent synthetic jets always leads to the mixing reduction when phase difference is lessthan zero.展开更多
基金supported by China National Funds for Distinguished Young Scientists (Grant No. 51025103)the National Basic Research Program of China (Grant Nos. 50872118 and 58021001)
文摘The exchange bias (EB) has been investigated in magnetic materials with the ferromagnetic (FM)/antiferromagnetic (AFM) contacting interfaces for more than half a century. To date, the significant progress has been made in the layered magnetic FM/AFM thin film systems. EB mechanisms have shown substantive research advances. Here some of the new advances are introduced and discussed with the emphasis on the influence of AFlVl layer, the interlayer EB coupling across nonmagnetic spacer, and the interlayer coupling across AFlVl layer, as well as EB related to multiferrioc materials and electrical control.
基金supported by the National Natural Science Foundation of China(Grant Nos.51322101,51231004 and 51571128)the Ministry of Science and Technology of China(Grant No.2014AA032904)
文摘Manipulation of antiferromagnetic(AFM) spins by electrical means is on great demand to develop the AFM spintronics with low power consumption. Here we report a reversible electrical control of antiferromagnetic moments of FeMn up to 15 nm, using an ionic liquid to exert a substantial electric-field effect. The manipulation is demonstrated by the modulation of exchange spring in[Co/Pt]/FeMn system, where AFM moments in FeMn pin the magnetization rotation of Co/Pt. By carrier injection or extraction,the magnetic anisotropy of the top layer in FeMn is modulated to influence the whole exchange spring and then passes its influence to the [Co/Pt]/FeMn interface, through a distance up to the length of exchange spring that fully screens electric field. Comparing FeMn to IrMn, despite the opposite dependence of exchange bias on gate voltages, the same correlation between carrier density and exchange spring stiffness is demonstrated. Besides the fundamental significance of modulating the spin structures in metallic AFM via all-electrical fashion, the present finding would advance the development of low-power-consumption AFM spintronics.
基金National Natural Science Foundation of China for-the support projects Grant No.50806006.
文摘Detailed unsteady numerical simulation has been carried out to investigate the mechanism of adjacent syntheticjets and the influence of different phases on the mixing of coaxial jets. The results show the combined jet, formedby coupling the vortex pairs at the orifice of two adjacent actuators, can exhibit better controlling effect. Spanwisepressure difference appears because of the existence of phase difference between the left jet and right jet, whichresults in the variation of the combined jet. When the phase difference is greater than zero, mixing enhancementof coaxial jets can be achieved, but there are maximum phase difference and optimal phase difference. On thecontrary, application of adjacent synthetic jets always leads to the mixing reduction when phase difference is lessthan zero.