This article addresses the magnetohydrodynamics(MHD) flow of a third grade fluid over an exponentially stretching sheet. Analysis is carried out in the presence of first order chemical reaction. Both cases of construc...This article addresses the magnetohydrodynamics(MHD) flow of a third grade fluid over an exponentially stretching sheet. Analysis is carried out in the presence of first order chemical reaction. Both cases of constructive and destructive chemical reactions are reported. Convergent solutions of the resulting differential systems are presented in series forms. Characteristics of various sundry parameters on the velocity, concentration, skin friction and local Sherwood number are analyzed and discussed.展开更多
In order to obtain magnetorheological (MR) elastomers with high magnetorheological effect, a family of anisotropic rubber-based MR elastomers was developed using a new form of chemical modification. Three different ...In order to obtain magnetorheological (MR) elastomers with high magnetorheological effect, a family of anisotropic rubber-based MR elastomers was developed using a new form of chemical modification. Three different kinds of surfactants, i.e. anionic, nonionic and compound surfactants, were employed separately to modify iron particles. The MR effect was evaluated by measuring the dynamic shear modulus of MR elastomer with a magneto-combined dynamic mechanical analyzer. Results show that the relative MR effect can be up to 188% when the iron particles are modified with 15% Span 80. Besides the surface activity of Span 80, however, such high modifying effect is partly due to the plasticizing effect of Span 80. Compared with the single surfactant, the superior surface activity of compound surfactant makes the relative MR effect reach 77% at a low content of 0.4%. Scanning electron microscope observation shows that the modification of compound surfactant results in perfect compatibility between particles and rubber matrix and special self-assembled structure of particles. Such special structure has been proved beneficial to the improvement of the relative MR effect.展开更多
Magnetorheological elastomer (MRE) is a new kind of smart materials, the rheological properties can be controlled rapidly by the external magnetic field. It is mainly composed of rubber and micron-sized ferromagneti...Magnetorheological elastomer (MRE) is a new kind of smart materials, the rheological properties can be controlled rapidly by the external magnetic field. It is mainly composed of rubber and micron-sized ferromagnetic particles, which forms a chain-like structure. Therefore its mechanical, electric, and magnetic properties can be changed by the applied magnetic field, which is called as the magneto-induced effect. But this effect is not remarkable enough currently for the engineering application. So it is important for material preparation to optimize parameters to enhance the magneto-induced effect. In this work, based on chain-like model, some factors influencing the magneto-induced effect of MRE were analyzed theoretically by using dipole method with the normal distribution of chain's angle introduced. The factors included the oblique angle of particles chains, magnetic field intensity, and shear strain, etc. Some experiments were also carried out.展开更多
A numerical study has been carried out to investigate the temperature distribution and the natural convection heat transfer in axisymmetric two-dimensional vertical saturated porous cylinder with steady state laminar ...A numerical study has been carried out to investigate the temperature distribution and the natural convection heat transfer in axisymmetric two-dimensional vertical saturated porous cylinder with steady state laminar flow. A comparison between two situations is done under the effect of MHD (magnetohydrodynamics) and radiation. In the two situations, the vertical walls of the cylinder are cooled with constant wall temperature and a constant heat generation subjected along the centerline of the cylinder. The first case for cylinder with insulated upper surface and cooled bottom surface while the second case for cylinder with cooled upper surface and insulated bottom surface. The governing equations used are continuity, momentum and energy equations which are transformed to dimensionless equations. The finite difference approach is used to obtain all the computational results using the MATLAB-7 programming. The parameters affected the system are Rayleigh number ranging within (102≤ Ra ≤104), radiation parameter (0≤ Rd ≤ 2) and magnetohydrodynamics MHD (Mn) (0 ≤ Mn≤ 2).The results show that the temperature of Case 1 is more than that in Case 2 at constant Ra, Mn and Rd while the value of the stream in Case 2 is greater than that in Case 1. Nu increase with the increase of Rd and increasing Mn caused the temperature to increase and the streamline dropped while Nu decreased. A correlation has been set up to give the average Nusselt number variation with Ra, Rd and Mn for which the results are found to be in good agreement with previously published researches.展开更多
When circularly polarized light travels through a ferrofluid film in the presence of an applied magnetic field, the transmitted light will behave as elliptically polarized light, because of magnetic birefringence and ...When circularly polarized light travels through a ferrofluid film in the presence of an applied magnetic field, the transmitted light will behave as elliptically polarized light, because of magnetic birefringence and dichroism. The angular distribution of the relative intensity of the transmitted light can be obtained using a polarizer, so that the ratio of both the long and short ax- es-as well as the orientation angle of the ellipse, corresponding to the direction of the applied magnetic field--can be deter- mined, and whether the ferrofluids samples are stable during the measurement can be directly judged from the shape of the distribution curves. Thus, the ratio of the amplitudes Ax/Ay and the added phase difference A r can be resolved in the elliptically polarized light, and information on both the magnetic birefringence An and the dichroism Ak can be deduced for the ferrofluid sample. From the orientation angles of both right-handed and left-handed elliptically polarized transmitted light, the direction of the applied magnetic field can be accurately determined. Using circularly polarized light, the magnetic birefringence and dichroism of pure γ-Fe2O3 ferrofluids and γ--Fe2O3/ZnFe2O4 binary ferrofluids were studied. For the binary ferrofluids, a mod- ulating effect on the magnetic birefringence and dichroism was revealed.展开更多
文摘This article addresses the magnetohydrodynamics(MHD) flow of a third grade fluid over an exponentially stretching sheet. Analysis is carried out in the presence of first order chemical reaction. Both cases of constructive and destructive chemical reactions are reported. Convergent solutions of the resulting differential systems are presented in series forms. Characteristics of various sundry parameters on the velocity, concentration, skin friction and local Sherwood number are analyzed and discussed.
基金ACKNOWLEDGMENTS This work was supported by the Natioal Natural Science Foundation of China (No.10672154) and the Specialized Research Fund for the Doctoral Program of Higher Education (No.20050358010). The Scholarship BRJH funding of Chinese Academy of Sciences is also appreciated.
文摘In order to obtain magnetorheological (MR) elastomers with high magnetorheological effect, a family of anisotropic rubber-based MR elastomers was developed using a new form of chemical modification. Three different kinds of surfactants, i.e. anionic, nonionic and compound surfactants, were employed separately to modify iron particles. The MR effect was evaluated by measuring the dynamic shear modulus of MR elastomer with a magneto-combined dynamic mechanical analyzer. Results show that the relative MR effect can be up to 188% when the iron particles are modified with 15% Span 80. Besides the surface activity of Span 80, however, such high modifying effect is partly due to the plasticizing effect of Span 80. Compared with the single surfactant, the superior surface activity of compound surfactant makes the relative MR effect reach 77% at a low content of 0.4%. Scanning electron microscope observation shows that the modification of compound surfactant results in perfect compatibility between particles and rubber matrix and special self-assembled structure of particles. Such special structure has been proved beneficial to the improvement of the relative MR effect.
基金This work was supported by the National Natural Science Foundation of China (No.50830202 and No.60804018) and the Plan of the Excellent Talent for the New Century (NCET-07-0910). The authors also appreciate the help in the experimental instruments of Professor Xing-long Gong of University of Science and Technology of China deeply.
文摘Magnetorheological elastomer (MRE) is a new kind of smart materials, the rheological properties can be controlled rapidly by the external magnetic field. It is mainly composed of rubber and micron-sized ferromagnetic particles, which forms a chain-like structure. Therefore its mechanical, electric, and magnetic properties can be changed by the applied magnetic field, which is called as the magneto-induced effect. But this effect is not remarkable enough currently for the engineering application. So it is important for material preparation to optimize parameters to enhance the magneto-induced effect. In this work, based on chain-like model, some factors influencing the magneto-induced effect of MRE were analyzed theoretically by using dipole method with the normal distribution of chain's angle introduced. The factors included the oblique angle of particles chains, magnetic field intensity, and shear strain, etc. Some experiments were also carried out.
文摘A numerical study has been carried out to investigate the temperature distribution and the natural convection heat transfer in axisymmetric two-dimensional vertical saturated porous cylinder with steady state laminar flow. A comparison between two situations is done under the effect of MHD (magnetohydrodynamics) and radiation. In the two situations, the vertical walls of the cylinder are cooled with constant wall temperature and a constant heat generation subjected along the centerline of the cylinder. The first case for cylinder with insulated upper surface and cooled bottom surface while the second case for cylinder with cooled upper surface and insulated bottom surface. The governing equations used are continuity, momentum and energy equations which are transformed to dimensionless equations. The finite difference approach is used to obtain all the computational results using the MATLAB-7 programming. The parameters affected the system are Rayleigh number ranging within (102≤ Ra ≤104), radiation parameter (0≤ Rd ≤ 2) and magnetohydrodynamics MHD (Mn) (0 ≤ Mn≤ 2).The results show that the temperature of Case 1 is more than that in Case 2 at constant Ra, Mn and Rd while the value of the stream in Case 2 is greater than that in Case 1. Nu increase with the increase of Rd and increasing Mn caused the temperature to increase and the streamline dropped while Nu decreased. A correlation has been set up to give the average Nusselt number variation with Ra, Rd and Mn for which the results are found to be in good agreement with previously published researches.
基金supported by the National Natural Science Foundation of China (Grant No. 11074205)
文摘When circularly polarized light travels through a ferrofluid film in the presence of an applied magnetic field, the transmitted light will behave as elliptically polarized light, because of magnetic birefringence and dichroism. The angular distribution of the relative intensity of the transmitted light can be obtained using a polarizer, so that the ratio of both the long and short ax- es-as well as the orientation angle of the ellipse, corresponding to the direction of the applied magnetic field--can be deter- mined, and whether the ferrofluids samples are stable during the measurement can be directly judged from the shape of the distribution curves. Thus, the ratio of the amplitudes Ax/Ay and the added phase difference A r can be resolved in the elliptically polarized light, and information on both the magnetic birefringence An and the dichroism Ak can be deduced for the ferrofluid sample. From the orientation angles of both right-handed and left-handed elliptically polarized transmitted light, the direction of the applied magnetic field can be accurately determined. Using circularly polarized light, the magnetic birefringence and dichroism of pure γ-Fe2O3 ferrofluids and γ--Fe2O3/ZnFe2O4 binary ferrofluids were studied. For the binary ferrofluids, a mod- ulating effect on the magnetic birefringence and dichroism was revealed.