A disc-type magneto-rheological fluid damper operating in shear mode is proposed in this paper,which is based on the special characteristics of the magneto-rheological (MR) fluid with rapid, reversible and dramatic ch...A disc-type magneto-rheological fluid damper operating in shear mode is proposed in this paper,which is based on the special characteristics of the magneto-rheological (MR) fluid with rapid, reversible and dramatic change in its rheological properties by the application of an external magnetic field. The magneticfield of the disc-type MR fluid damper is analysed by the finite element method ; the controllability of the disctype MR fluid damper on the dynamic behaviour of a rotor system ; and the effectiveness of the disc-type MR fluid damper in controlling the vibration of a rotor system, are studied in a flexible rotor system with an over-hung disc. It is shown that the magnetic flux density of the disc-type MR fluid damper in the working areas can significantly change with the applied current in the coil ; and that the dynamic behavior of the disc-type MR fluid damper can be varied by the application of an external magnetic field produced by a low voltage electromagnetic coil. The disc-type MR fluid damper can significantly change the dynamic characteristics of a rotor system, provided that the location of the disk-type MR fluid damper is carefully chosen. The disc-type MR fluid damper is a new actuator with good dynamic characteristics for rotating machinery.展开更多
Magnetorheological(MR)materials are a class of smart material,whose the mechanical/rheological state can be controlled under a magnetic field.Magnetorheological materials are typically fluids,gels,or elastomers.In thi...Magnetorheological(MR)materials are a class of smart material,whose the mechanical/rheological state can be controlled under a magnetic field.Magnetorheological materials are typically fluids,gels,or elastomers.In this study,anisotropic and isotropic magneto-rheological elastomer(MRE)samples were fabricated using a silicone rubber matrix with carbonyl iron particles as filler particles.The magnetic field-dependent inductance properties of these samples were studied using inductors specially designed for the analysis.The effect of the filler particle content,fabrication conditions,and inductance properties were characterized using a self-built system in both constant and transient magnetic fields.These factors show a significant effect on the inductance properties of the MRE inductor under an applied magnetic field.The anisotropic MRE inductor was more sensitive than the inductor based on an isotropic MRE.Owing to the presence of a constant magnetic field,the inductance value of the MRE inductor decreased with an increase in the external magnetic field.An attempt in elucidation of the mechanism is reported here.This study may enable the MRE to be widely used in practical applications such as monitoring magnetic field or detecting the filler particle content inside MR materials.展开更多
In order to obtain magnetorheological (MR) elastomers with high magnetorheological effect, a family of anisotropic rubber-based MR elastomers was developed using a new form of chemical modification. Three different ...In order to obtain magnetorheological (MR) elastomers with high magnetorheological effect, a family of anisotropic rubber-based MR elastomers was developed using a new form of chemical modification. Three different kinds of surfactants, i.e. anionic, nonionic and compound surfactants, were employed separately to modify iron particles. The MR effect was evaluated by measuring the dynamic shear modulus of MR elastomer with a magneto-combined dynamic mechanical analyzer. Results show that the relative MR effect can be up to 188% when the iron particles are modified with 15% Span 80. Besides the surface activity of Span 80, however, such high modifying effect is partly due to the plasticizing effect of Span 80. Compared with the single surfactant, the superior surface activity of compound surfactant makes the relative MR effect reach 77% at a low content of 0.4%. Scanning electron microscope observation shows that the modification of compound surfactant results in perfect compatibility between particles and rubber matrix and special self-assembled structure of particles. Such special structure has been proved beneficial to the improvement of the relative MR effect.展开更多
Magneto-rheological (MR) fluid-based dampers are currently being explored for their potential implementation in intelligent vehicle suspension designs. Due to inherent hysteretic force properties of the MR dampers, an...Magneto-rheological (MR) fluid-based dampers are currently being explored for their potential implementation in intelligent vehicle suspension designs. Due to inherent hysteretic force properties of the MR dampers, analyzing and suppressing the MR-damper hysteresis effects, therefore, impose a great challenge. A quarter-vehicle MR-suspension model is formulated in conjunction with proposed hysteretic and mean MR-damper models, and the passive and semi-actively controlled MR-suspension systems are focused to investigate the influence of MR-damper force hysteresis. The semi-actively controlled MR-suspension employs the “on-off” control law in response to direction of the damper velocity, so as to generate the asymmetric damping force property form the symmetric MR-damper design. The results show that the MR-damping hysteresis yields serious transients and oscillations in responses for the semi-actively controlled MR-suspension than the passive MR-suspension due to the current-switching discontinuity, and would thus deteriorate the suspension performance. The undesired strong transients and oscillations in responses can be effectively suppressed by employing the proposed smooth technique without phase shift for modulating the command current discontinuity.展开更多
Magnetorheological(MR) cell with multi-coil was designed to enlarge the range of controllable transmission torque by increasing the effective length. Individual input current was proposed to maximize its potential for...Magnetorheological(MR) cell with multi-coil was designed to enlarge the range of controllable transmission torque by increasing the effective length. Individual input current was proposed to maximize its potential for reducing power consumption and generating large yield stress. Finite element analysis was performed to analyze magnetic field distribution, based on which a prototype MR cell was fabricated and tested to investigate the performance of various combinations of individual input currents. A good correlation was identified between experimental results and FEA predications. The results show that the power consumption can be reduced to 42.4%, maintaining large transmission torque, by distributing the total current(2 A) to three individual magnetic coils. In addition, optimal results of four input currents considering a multi-objective function are obtained by changing the weighting factor λ. The advantage of this design, such as lower power consumption and more control flexibility, makes it more competitive in engineering applications that require large energy consumption.展开更多
Gelatincarbonyl iron composite particle was prepared by micro emulsion method. The analysis of scanning electron microscope(SEM) shows that the ultrafine particles are spheroids coated by gelatin, and the average size...Gelatincarbonyl iron composite particle was prepared by micro emulsion method. The analysis of scanning electron microscope(SEM) shows that the ultrafine particles are spheroids coated by gelatin, and the average sizes of particles are 310μm. The specific saturation magnetization σ_s is 130.9A·m2/kg, coercivity H_c is 0.823A/m, and residual magnetism r is 4.98Am2/kg for the composite particles. It is shown that the particles possess properties of soft magnetic. The yield stress of magnetorheological fluid(MRF) with composite particle reaches 70kPa at 0.5T magnetic induction. Magnetorheological effects are superior in lower magnetic field intensity and the subsidence stability of the MRF is excellent compared with pure carbonyl iron powder.展开更多
This paper presents a new approach for modeling of the conducted electromagnetic interference(EMI) prediction for widely used converter systems.Coupling paths and mechanism of differential mode(DM) interference and co...This paper presents a new approach for modeling of the conducted electromagnetic interference(EMI) prediction for widely used converter systems.Coupling paths and mechanism of differential mode(DM) interference and common mode(CM) interference have been analyzed.Models to predict the high-frequency noise of PWM converter system are created.A direct calculation method in frequency domain is proposed for the deduction of frequency spectrum.A method is given for obtaining the parasitic parameters and topological structure of the model.An experimental investigation of the conducted emission from an actual high-power rectifier system is described.The validity of the models is confirmed by comparison to laboratory measurements.展开更多
Dispersion of metal particles in fluids can be used to manufacture magnetorheologic fluids(MRF).Properties of these dispersion systems are mainly determined by the arrangements and contacts among particles.In this pap...Dispersion of metal particles in fluids can be used to manufacture magnetorheologic fluids(MRF).Properties of these dispersion systems are mainly determined by the arrangements and contacts among particles.In this paper,particles with smaller sizes than those in the target dispersion system are added using iron particles dispersed in silicon oil as a model to control the arrangements and contacts.The result suggests that these small-sized particles have a significant effect on the viscoelastic properties of the dispersion.The maximum packing density and the fluid viscosity depend mainly on the adhesion of small particles,which is directly related to the fraction of small particles in the model dispersion system.Under a magnetic field,the yield stress of the dispersion system is proportional to the concentration of iron particles,suggesting that the yield stress relies directly on the presence of small particles.These small particles in the fluid determine the difference in stress of the magnetorheological fluid(MRF) with or without a magnetic field.展开更多
文摘A disc-type magneto-rheological fluid damper operating in shear mode is proposed in this paper,which is based on the special characteristics of the magneto-rheological (MR) fluid with rapid, reversible and dramatic change in its rheological properties by the application of an external magnetic field. The magneticfield of the disc-type MR fluid damper is analysed by the finite element method ; the controllability of the disctype MR fluid damper on the dynamic behaviour of a rotor system ; and the effectiveness of the disc-type MR fluid damper in controlling the vibration of a rotor system, are studied in a flexible rotor system with an over-hung disc. It is shown that the magnetic flux density of the disc-type MR fluid damper in the working areas can significantly change with the applied current in the coil ; and that the dynamic behavior of the disc-type MR fluid damper can be varied by the application of an external magnetic field produced by a low voltage electromagnetic coil. The disc-type MR fluid damper can significantly change the dynamic characteristics of a rotor system, provided that the location of the disk-type MR fluid damper is carefully chosen. The disc-type MR fluid damper is a new actuator with good dynamic characteristics for rotating machinery.
基金Project(cstc2019jcyj-msxm X0005)supported by General Program of Chongqing Natural Science Foundation,ChinaProject(51905062)supported by the National Natural Science Foundation of China。
文摘Magnetorheological(MR)materials are a class of smart material,whose the mechanical/rheological state can be controlled under a magnetic field.Magnetorheological materials are typically fluids,gels,or elastomers.In this study,anisotropic and isotropic magneto-rheological elastomer(MRE)samples were fabricated using a silicone rubber matrix with carbonyl iron particles as filler particles.The magnetic field-dependent inductance properties of these samples were studied using inductors specially designed for the analysis.The effect of the filler particle content,fabrication conditions,and inductance properties were characterized using a self-built system in both constant and transient magnetic fields.These factors show a significant effect on the inductance properties of the MRE inductor under an applied magnetic field.The anisotropic MRE inductor was more sensitive than the inductor based on an isotropic MRE.Owing to the presence of a constant magnetic field,the inductance value of the MRE inductor decreased with an increase in the external magnetic field.An attempt in elucidation of the mechanism is reported here.This study may enable the MRE to be widely used in practical applications such as monitoring magnetic field or detecting the filler particle content inside MR materials.
基金ACKNOWLEDGMENTS This work was supported by the Natioal Natural Science Foundation of China (No.10672154) and the Specialized Research Fund for the Doctoral Program of Higher Education (No.20050358010). The Scholarship BRJH funding of Chinese Academy of Sciences is also appreciated.
文摘In order to obtain magnetorheological (MR) elastomers with high magnetorheological effect, a family of anisotropic rubber-based MR elastomers was developed using a new form of chemical modification. Three different kinds of surfactants, i.e. anionic, nonionic and compound surfactants, were employed separately to modify iron particles. The MR effect was evaluated by measuring the dynamic shear modulus of MR elastomer with a magneto-combined dynamic mechanical analyzer. Results show that the relative MR effect can be up to 188% when the iron particles are modified with 15% Span 80. Besides the surface activity of Span 80, however, such high modifying effect is partly due to the plasticizing effect of Span 80. Compared with the single surfactant, the superior surface activity of compound surfactant makes the relative MR effect reach 77% at a low content of 0.4%. Scanning electron microscope observation shows that the modification of compound surfactant results in perfect compatibility between particles and rubber matrix and special self-assembled structure of particles. Such special structure has been proved beneficial to the improvement of the relative MR effect.
文摘Magneto-rheological (MR) fluid-based dampers are currently being explored for their potential implementation in intelligent vehicle suspension designs. Due to inherent hysteretic force properties of the MR dampers, analyzing and suppressing the MR-damper hysteresis effects, therefore, impose a great challenge. A quarter-vehicle MR-suspension model is formulated in conjunction with proposed hysteretic and mean MR-damper models, and the passive and semi-actively controlled MR-suspension systems are focused to investigate the influence of MR-damper force hysteresis. The semi-actively controlled MR-suspension employs the “on-off” control law in response to direction of the damper velocity, so as to generate the asymmetric damping force property form the symmetric MR-damper design. The results show that the MR-damping hysteresis yields serious transients and oscillations in responses for the semi-actively controlled MR-suspension than the passive MR-suspension due to the current-switching discontinuity, and would thus deteriorate the suspension performance. The undesired strong transients and oscillations in responses can be effectively suppressed by employing the proposed smooth technique without phase shift for modulating the command current discontinuity.
基金Projects(51175265,51305207)supported by the National Natural Science Foundation of China
文摘Magnetorheological(MR) cell with multi-coil was designed to enlarge the range of controllable transmission torque by increasing the effective length. Individual input current was proposed to maximize its potential for reducing power consumption and generating large yield stress. Finite element analysis was performed to analyze magnetic field distribution, based on which a prototype MR cell was fabricated and tested to investigate the performance of various combinations of individual input currents. A good correlation was identified between experimental results and FEA predications. The results show that the power consumption can be reduced to 42.4%, maintaining large transmission torque, by distributing the total current(2 A) to three individual magnetic coils. In addition, optimal results of four input currents considering a multi-objective function are obtained by changing the weighting factor λ. The advantage of this design, such as lower power consumption and more control flexibility, makes it more competitive in engineering applications that require large energy consumption.
文摘Gelatincarbonyl iron composite particle was prepared by micro emulsion method. The analysis of scanning electron microscope(SEM) shows that the ultrafine particles are spheroids coated by gelatin, and the average sizes of particles are 310μm. The specific saturation magnetization σ_s is 130.9A·m2/kg, coercivity H_c is 0.823A/m, and residual magnetism r is 4.98Am2/kg for the composite particles. It is shown that the particles possess properties of soft magnetic. The yield stress of magnetorheological fluid(MRF) with composite particle reaches 70kPa at 0.5T magnetic induction. Magnetorheological effects are superior in lower magnetic field intensity and the subsidence stability of the MRF is excellent compared with pure carbonyl iron powder.
基金supported by the National Natural Science Foundation of China (Grant No. 50977063)Key Science and Technology Supporting Project of Tianjin (Grant No. 09ZCKFGX01800)
文摘This paper presents a new approach for modeling of the conducted electromagnetic interference(EMI) prediction for widely used converter systems.Coupling paths and mechanism of differential mode(DM) interference and common mode(CM) interference have been analyzed.Models to predict the high-frequency noise of PWM converter system are created.A direct calculation method in frequency domain is proposed for the deduction of frequency spectrum.A method is given for obtaining the parasitic parameters and topological structure of the model.An experimental investigation of the conducted emission from an actual high-power rectifier system is described.The validity of the models is confirmed by comparison to laboratory measurements.
基金supported by the Central University Basic Research and Operating Expenses (Grant No. YWF-10-03-019, YWF-11-03-H-005, YWF-11-04-009)the Scientific Research Foundation for Returned Overseas Chinese Scholars, State Education Ministry
文摘Dispersion of metal particles in fluids can be used to manufacture magnetorheologic fluids(MRF).Properties of these dispersion systems are mainly determined by the arrangements and contacts among particles.In this paper,particles with smaller sizes than those in the target dispersion system are added using iron particles dispersed in silicon oil as a model to control the arrangements and contacts.The result suggests that these small-sized particles have a significant effect on the viscoelastic properties of the dispersion.The maximum packing density and the fluid viscosity depend mainly on the adhesion of small particles,which is directly related to the fraction of small particles in the model dispersion system.Under a magnetic field,the yield stress of the dispersion system is proportional to the concentration of iron particles,suggesting that the yield stress relies directly on the presence of small particles.These small particles in the fluid determine the difference in stress of the magnetorheological fluid(MRF) with or without a magnetic field.