The theoretical study of a semi-active predictive control(SAPC) system with magnetorheological(MR) dampers to reduce the responses of seismically excited structures was presented.The SAPC scheme is based on a predicti...The theoretical study of a semi-active predictive control(SAPC) system with magnetorheological(MR) dampers to reduce the responses of seismically excited structures was presented.The SAPC scheme is based on a prediction model of the system response to obtain the control actions by minimizing an object function,which has a function of self-compensation for time delay occurring in real application.A double-ended shear mode combined with a valve mode MR damper,named MRF-04K damper,with the maximum force of 20 kN was designed and manufactured,and parameters of the Bouc-Wen hysteresis model were determined to portray the behavior of this damper.As an example,a 5-story building frame equipped with 2 MRF-04K dampers was presented to demonstrate the performance of the proposed SAPC scheme for addressing time delay and reducing the structural responses under different earthquakes.Comparison with the uncontrolled structure,the passive-off and passive-on cases indicates that both the peak and the norm values of structural responses are all clearly reduced,and the SAPC scheme has a better performance than the two passive cases.展开更多
A disc-type magneto-rheological fluid damper operating in shear mode is proposed in this paper,which is based on the special characteristics of the magneto-rheological (MR) fluid with rapid, reversible and dramatic ch...A disc-type magneto-rheological fluid damper operating in shear mode is proposed in this paper,which is based on the special characteristics of the magneto-rheological (MR) fluid with rapid, reversible and dramatic change in its rheological properties by the application of an external magnetic field. The magneticfield of the disc-type MR fluid damper is analysed by the finite element method ; the controllability of the disctype MR fluid damper on the dynamic behaviour of a rotor system ; and the effectiveness of the disc-type MR fluid damper in controlling the vibration of a rotor system, are studied in a flexible rotor system with an over-hung disc. It is shown that the magnetic flux density of the disc-type MR fluid damper in the working areas can significantly change with the applied current in the coil ; and that the dynamic behavior of the disc-type MR fluid damper can be varied by the application of an external magnetic field produced by a low voltage electromagnetic coil. The disc-type MR fluid damper can significantly change the dynamic characteristics of a rotor system, provided that the location of the disk-type MR fluid damper is carefully chosen. The disc-type MR fluid damper is a new actuator with good dynamic characteristics for rotating machinery.展开更多
Magnetorheological (MR) dampers have been proposed to control the vibration of offshore platforms in this paper. The semi-active control strategy based on fuzzy control algorithm was adopted to determine the optimal...Magnetorheological (MR) dampers have been proposed to control the vibration of offshore platforms in this paper. The semi-active control strategy based on fuzzy control algorithm was adopted to determine the optimal output control force based on the responses of jacket platforms. A typical jacket platform in Mexico Gulf was selected as the numerical example to investigate the effectiveness of the proposed control method. Furthermore, a model experiment was performed to validate the results of the numerical simulation. The experimental model of the jacket platform was designed based on dynamical similarity criterion by the scale of 1:50. Both of the numerical and experimental results show that the semi-active control system with the MR damper can reduce vibrations of jacket platforms effectively and at the same time the control effect is stable.展开更多
A semi-active magneto-rheological (MR) damper was experimentally investigated and compared to an original equipment manufacturer (OEM) damper for a passenger vehicle, by using a quarter car models. A full-scale tw...A semi-active magneto-rheological (MR) damper was experimentally investigated and compared to an original equipment manufacturer (OEM) damper for a passenger vehicle, by using a quarter car models. A full-scale two-degree-of-freedom quarter car experimental set-up was constructed to study the vehicle suspension. On-off skyhook controller and Fuzzy-Lyapunov skyhook controller (FLSC) were employed to control the input current for MR damper so as to achieve the desired damping force. Tests were done to evaluate the ability of MR damper for controlling vehicle vibration. Test results show that the semi-active MR vehicle suspension vibration control system is feasible. In comparison with OEM damper, on-off and FLSC controlled MR dampers can effectively reduce the acceleration of vehicle sprtmg mass by about 15% and 24%, respectively.展开更多
Severe vibration of underground structures may be induced under blast loads. According to the characteristics of the explosion-induced ground shock wave, a new-type damper, inverse control magneto-rheological(MR) da...Severe vibration of underground structures may be induced under blast loads. According to the characteristics of the explosion-induced ground shock wave, a new-type damper, inverse control magneto-rheological(MR) damper was designed to control the vibration, The high-frequency performance test of the MR damper was carried out on the small shaking table. It is shown that the performance can be modeled by use of the modified Bouc-Wen model, and the Parameters of the model keep stable in the range of 15--50 Hz.展开更多
Magneto-rheological (MR) fluid-based dampers are currently being explored for their potential implementation in intelligent vehicle suspension designs. Due to inherent hysteretic force properties of the MR dampers, an...Magneto-rheological (MR) fluid-based dampers are currently being explored for their potential implementation in intelligent vehicle suspension designs. Due to inherent hysteretic force properties of the MR dampers, analyzing and suppressing the MR-damper hysteresis effects, therefore, impose a great challenge. A quarter-vehicle MR-suspension model is formulated in conjunction with proposed hysteretic and mean MR-damper models, and the passive and semi-actively controlled MR-suspension systems are focused to investigate the influence of MR-damper force hysteresis. The semi-actively controlled MR-suspension employs the “on-off” control law in response to direction of the damper velocity, so as to generate the asymmetric damping force property form the symmetric MR-damper design. The results show that the MR-damping hysteresis yields serious transients and oscillations in responses for the semi-actively controlled MR-suspension than the passive MR-suspension due to the current-switching discontinuity, and would thus deteriorate the suspension performance. The undesired strong transients and oscillations in responses can be effectively suppressed by employing the proposed smooth technique without phase shift for modulating the command current discontinuity.展开更多
基金Projects(90815025,51178034) supported by the National Natural Science Foundation of China
文摘The theoretical study of a semi-active predictive control(SAPC) system with magnetorheological(MR) dampers to reduce the responses of seismically excited structures was presented.The SAPC scheme is based on a prediction model of the system response to obtain the control actions by minimizing an object function,which has a function of self-compensation for time delay occurring in real application.A double-ended shear mode combined with a valve mode MR damper,named MRF-04K damper,with the maximum force of 20 kN was designed and manufactured,and parameters of the Bouc-Wen hysteresis model were determined to portray the behavior of this damper.As an example,a 5-story building frame equipped with 2 MRF-04K dampers was presented to demonstrate the performance of the proposed SAPC scheme for addressing time delay and reducing the structural responses under different earthquakes.Comparison with the uncontrolled structure,the passive-off and passive-on cases indicates that both the peak and the norm values of structural responses are all clearly reduced,and the SAPC scheme has a better performance than the two passive cases.
文摘A disc-type magneto-rheological fluid damper operating in shear mode is proposed in this paper,which is based on the special characteristics of the magneto-rheological (MR) fluid with rapid, reversible and dramatic change in its rheological properties by the application of an external magnetic field. The magneticfield of the disc-type MR fluid damper is analysed by the finite element method ; the controllability of the disctype MR fluid damper on the dynamic behaviour of a rotor system ; and the effectiveness of the disc-type MR fluid damper in controlling the vibration of a rotor system, are studied in a flexible rotor system with an over-hung disc. It is shown that the magnetic flux density of the disc-type MR fluid damper in the working areas can significantly change with the applied current in the coil ; and that the dynamic behavior of the disc-type MR fluid damper can be varied by the application of an external magnetic field produced by a low voltage electromagnetic coil. The disc-type MR fluid damper can significantly change the dynamic characteristics of a rotor system, provided that the location of the disk-type MR fluid damper is carefully chosen. The disc-type MR fluid damper is a new actuator with good dynamic characteristics for rotating machinery.
基金Supported by the National Natural Science Foundation of China (NSFC-5060900).
文摘Magnetorheological (MR) dampers have been proposed to control the vibration of offshore platforms in this paper. The semi-active control strategy based on fuzzy control algorithm was adopted to determine the optimal output control force based on the responses of jacket platforms. A typical jacket platform in Mexico Gulf was selected as the numerical example to investigate the effectiveness of the proposed control method. Furthermore, a model experiment was performed to validate the results of the numerical simulation. The experimental model of the jacket platform was designed based on dynamical similarity criterion by the scale of 1:50. Both of the numerical and experimental results show that the semi-active control system with the MR damper can reduce vibrations of jacket platforms effectively and at the same time the control effect is stable.
基金Project(51175265) supported by the National Natural Science Foundation of ChinaProject(CX10B_114Z) supported by Jiangsu College Graduate Research and Innovation Program,China+1 种基金Project(BK2008415) supported by the Natural Science Foundation of Jiangsu Province,ChinaProject(Y1110313) supported by the Natural Science Foundation of Zhejiang Province,China
文摘A semi-active magneto-rheological (MR) damper was experimentally investigated and compared to an original equipment manufacturer (OEM) damper for a passenger vehicle, by using a quarter car models. A full-scale two-degree-of-freedom quarter car experimental set-up was constructed to study the vehicle suspension. On-off skyhook controller and Fuzzy-Lyapunov skyhook controller (FLSC) were employed to control the input current for MR damper so as to achieve the desired damping force. Tests were done to evaluate the ability of MR damper for controlling vehicle vibration. Test results show that the semi-active MR vehicle suspension vibration control system is feasible. In comparison with OEM damper, on-off and FLSC controlled MR dampers can effectively reduce the acceleration of vehicle sprtmg mass by about 15% and 24%, respectively.
基金Supported by National Nature Fund and National Civil-Defense Office
文摘Severe vibration of underground structures may be induced under blast loads. According to the characteristics of the explosion-induced ground shock wave, a new-type damper, inverse control magneto-rheological(MR) damper was designed to control the vibration, The high-frequency performance test of the MR damper was carried out on the small shaking table. It is shown that the performance can be modeled by use of the modified Bouc-Wen model, and the Parameters of the model keep stable in the range of 15--50 Hz.
文摘Magneto-rheological (MR) fluid-based dampers are currently being explored for their potential implementation in intelligent vehicle suspension designs. Due to inherent hysteretic force properties of the MR dampers, analyzing and suppressing the MR-damper hysteresis effects, therefore, impose a great challenge. A quarter-vehicle MR-suspension model is formulated in conjunction with proposed hysteretic and mean MR-damper models, and the passive and semi-actively controlled MR-suspension systems are focused to investigate the influence of MR-damper force hysteresis. The semi-actively controlled MR-suspension employs the “on-off” control law in response to direction of the damper velocity, so as to generate the asymmetric damping force property form the symmetric MR-damper design. The results show that the MR-damping hysteresis yields serious transients and oscillations in responses for the semi-actively controlled MR-suspension than the passive MR-suspension due to the current-switching discontinuity, and would thus deteriorate the suspension performance. The undesired strong transients and oscillations in responses can be effectively suppressed by employing the proposed smooth technique without phase shift for modulating the command current discontinuity.