期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于优化的GRNN和BP神经网络的磁滞曲线拟合对比分析 被引量:17
1
作者 何汉林 孟爱华 +1 位作者 祝甲明 宋红晓 《机电工程》 CAS 2013年第1期116-120,共5页
针对超磁致伸缩材料(GMM)的磁滞非线性,运用广义回归神经网络(GRNN)和前馈BP神经网络分别对GMM的磁滞回线进行非线性逼近,通过网络的训练、预测,与Jiles-Atherton(J-A)模型进行了对比,分析了两种神经网络的逼近效果,给GMM的运用起到了... 针对超磁致伸缩材料(GMM)的磁滞非线性,运用广义回归神经网络(GRNN)和前馈BP神经网络分别对GMM的磁滞回线进行非线性逼近,通过网络的训练、预测,与Jiles-Atherton(J-A)模型进行了对比,分析了两种神经网络的逼近效果,给GMM的运用起到了很好的指导作用。其中,在GRNN神经网络中,由于所取数据有限,为了扩大样本容量,采取交叉验证方法对GRNN神经网络进行了训练,采用循环算法找出了最佳的径向基函数扩展系数SPREAD,并对传统GRNN神经网络进行了优化。研究结果表明:优化后的GRNN神经网络对于磁滞回线的预测精度明显高于BP神经网络。 展开更多
关键词 超磁致伸缩材料 广义回归神经网络 BP神经网络 磁滞曲线拟合
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部