Two manganese phosphonates Mn3(4-piH)2(H2O)3·H2O (1) and Mns(4-piH)2(4-piH2)2(phen)2(H2O)4 (2) (4-pill4 = 4-phosphonoisophthalic acid, phen = 1,10-phenanthroline) have been synthesized under hyd...Two manganese phosphonates Mn3(4-piH)2(H2O)3·H2O (1) and Mns(4-piH)2(4-piH2)2(phen)2(H2O)4 (2) (4-pill4 = 4-phosphonoisophthalic acid, phen = 1,10-phenanthroline) have been synthesized under hydrothermal conditions in the pres- ence of organic co-ligand. Both compounds exhibit layer structures but with different topologies. In compound 1, a complicated "ladder-like" chain of {Mn3O3}O2 which contains three- and six-member rings made up of triangular shaped {Mn3O3} tri- mers is found. The chains are linked by the PO3C groups to form an inorganic layer. The phenyl and protonated carboxylate groups are pendent between the layers with extensive hydrogen bonds. In compound 2, tetramers of {MnnO6 } are connected by the { MnO6 } octahedra through corner-sharing to form an infinite chain, which is further bridged by 4-pill3- ligands into a thick hybrid layer. Magnetic measurements reveal that antiferromagnetic interactions are dominant in both compounds. Metamag- netism is observed in compound 1 at low temperature, while no long range ordering is found in compound 2 down to 1.8 K.展开更多
The effects of the different Dzyaloshinskii-Moriya (DM) interaction on thermal entanglement of a two-qutrit Heisenberg XX spin chain in a nonuniform magnetic field are investigated. Our results imply that the x-comp...The effects of the different Dzyaloshinskii-Moriya (DM) interaction on thermal entanglement of a two-qutrit Heisenberg XX spin chain in a nonuniform magnetic field are investigated. Our results imply that the x-component DM interaztion plays a central role in enhancing quantum entanglement and it has a higher critical temperature than the z-component DM interaction. The entanglement can be tunable controlled by changing the multiple of the magnetic fields B1 and B2. Also we found that different DM interaction are competitive to each other in some conditions.展开更多
Three new iron(Ⅲ) phosphonate cage-like complexes with [Fe4], [Feg] and [Fe14] cores have been synthesized by solvothermal reaction with various starting materials. Magnetic studies show overall antiferromagnetic i...Three new iron(Ⅲ) phosphonate cage-like complexes with [Fe4], [Feg] and [Fe14] cores have been synthesized by solvothermal reaction with various starting materials. Magnetic studies show overall antiferromagnetic interaction presented in these cages.展开更多
The effect of transverse correlation between spins on the thermodynamic properties of ferromagnetic systems is investigated in details. Qualitatively, at finite temperature the transverse correlation reflects the shor...The effect of transverse correlation between spins on the thermodynamic properties of ferromagnetic systems is investigated in details. Qualitatively, at finite temperature the transverse correlation reflects the short-range interaction between spins, so that lowers the internal energy and consequently raises the free energy. It also means the introduction o[ some ordering, and hence lowers the entropy. It is depressed by the field which forces the spins to turn to the field direction, so that it decreases with the field when temperature is fixed. The low-temperature expansion of the energy shows that the inclusion of the transverse correlation at least partly considers the interaction between spin waves.展开更多
基金supported by the National Natural Science Foundation of China (90922006)the Natural Science Foundation of Jiangsu Province (BK2009009)
文摘Two manganese phosphonates Mn3(4-piH)2(H2O)3·H2O (1) and Mns(4-piH)2(4-piH2)2(phen)2(H2O)4 (2) (4-pill4 = 4-phosphonoisophthalic acid, phen = 1,10-phenanthroline) have been synthesized under hydrothermal conditions in the pres- ence of organic co-ligand. Both compounds exhibit layer structures but with different topologies. In compound 1, a complicated "ladder-like" chain of {Mn3O3}O2 which contains three- and six-member rings made up of triangular shaped {Mn3O3} tri- mers is found. The chains are linked by the PO3C groups to form an inorganic layer. The phenyl and protonated carboxylate groups are pendent between the layers with extensive hydrogen bonds. In compound 2, tetramers of {MnnO6 } are connected by the { MnO6 } octahedra through corner-sharing to form an infinite chain, which is further bridged by 4-pill3- ligands into a thick hybrid layer. Magnetic measurements reveal that antiferromagnetic interactions are dominant in both compounds. Metamag- netism is observed in compound 1 at low temperature, while no long range ordering is found in compound 2 down to 1.8 K.
基金Supported by the Pre-Research Foundation of PLA University of Science and Technology under Grant No.KYLYZLXY1203
文摘The effects of the different Dzyaloshinskii-Moriya (DM) interaction on thermal entanglement of a two-qutrit Heisenberg XX spin chain in a nonuniform magnetic field are investigated. Our results imply that the x-component DM interaztion plays a central role in enhancing quantum entanglement and it has a higher critical temperature than the z-component DM interaction. The entanglement can be tunable controlled by changing the multiple of the magnetic fields B1 and B2. Also we found that different DM interaction are competitive to each other in some conditions.
基金financially supported by Marie Curie International Incoming Fellowship (E.C. Contract No: PIIF-GA-2008-219588)the starting fund of Xi’an Jiaotong University (to YZZ)+1 种基金the Engineering and Physical Science Research Council (UK)the Royal Society for a Wolfson Merit Award (to REPW)
文摘Three new iron(Ⅲ) phosphonate cage-like complexes with [Fe4], [Feg] and [Fe14] cores have been synthesized by solvothermal reaction with various starting materials. Magnetic studies show overall antiferromagnetic interaction presented in these cages.
基金Supported by the National 973 Project 2012 CB927402the National Natural Science Foundation under Grant Nos.11074145 and 61275028
文摘The effect of transverse correlation between spins on the thermodynamic properties of ferromagnetic systems is investigated in details. Qualitatively, at finite temperature the transverse correlation reflects the short-range interaction between spins, so that lowers the internal energy and consequently raises the free energy. It also means the introduction o[ some ordering, and hence lowers the entropy. It is depressed by the field which forces the spins to turn to the field direction, so that it decreases with the field when temperature is fixed. The low-temperature expansion of the energy shows that the inclusion of the transverse correlation at least partly considers the interaction between spin waves.