Some new approaches for nonlinear force-free magnetic field are presented and new exact solutions are found analytically. Examples are given and some implications of results to astrophysical solar plasmas as well as t...Some new approaches for nonlinear force-free magnetic field are presented and new exact solutions are found analytically. Examples are given and some implications of results to astrophysical solar plasmas as well as tokamak or/and spheromak plasmas are discussed.展开更多
Explosive events have been observed to occur consecutively in bursts at intermittent locations along theboundary near the opposite polarity. The aim of the present paper is to explore a possible mechanism to interpret...Explosive events have been observed to occur consecutively in bursts at intermittent locations along theboundary near the opposite polarity. The aim of the present paper is to explore a possible mechanism to interpret thisburst-like characteristic of explosive events. The 2D magnetohydrodynamic (MHD) numerical simulations with resistivityhave been carried out to reproduce the intermittent spatial-temporal magnetic reconnection events taking place along thelong, compressible current sheet. The observed density enhancements in previously published results have been verifiedto be associated to magnetic reconnection sites. Late observational evidences, which support present attempts, have alsobeen found, at least in morphological evolution of the consecutive explosive events.展开更多
We clarify how magnetic reconnection can be derived from magnetohydrodynamics (MHD) equations in a way that is easily understandable to university students. The essential mechanism governing the time evolution of th...We clarify how magnetic reconnection can be derived from magnetohydrodynamics (MHD) equations in a way that is easily understandable to university students. The essential mechanism governing the time evolution of the magnetic field is diffusion dynamics. The magnetic field is represented by two components. It is clarified that the diffusion of a component causes agene ration of another component that is initially zero and, accordingly, that the magnetic force lines are reconnected. For this reconnection to occur correctly, the initial magnetic field must be directed oppositely in the two regions, e.g., y 〉 0 and y 〈 O; must be concave (convex) for y 〉 0 (y 〈 0); and must be saturated foryfar from the x axis, which would indicate the existence of the current sheet. It will be clear that our comprehension based on diffusion runs parallel to the common qualitative explanation about the magnetic reconnection.展开更多
Starting from the governing equations for a quantum magnetoplasma including the electron spin -1/2 effects and quantum Bohm potential, we derive Korteweg-de Vries (KdV) equation of the system of quantum magneto- hyd...Starting from the governing equations for a quantum magnetoplasma including the electron spin -1/2 effects and quantum Bohm potential, we derive Korteweg-de Vries (KdV) equation of the system of quantum magneto- hydrodynamics (QMHD). The amplitude and width of magnetosonic soliton with different parameters in the system are studied. It is found that the normalized Zeeman energy E plays a crucial role, for E ≥ 1 the amplitude τmξ and the width we of solitary wave all decrease as E increases. That is, the introduction of spin quantum force modifies the shape of solitary magnetosonic waves and makes them more narrower and shallower.展开更多
Based on results obtained from the study for MHD (magneto-hydrodynamics) of advective accretion disk, which are applied to real source showing typical values for CBS (close binary star-system), it will investigate...Based on results obtained from the study for MHD (magneto-hydrodynamics) of advective accretion disk, which are applied to real source showing typical values for CBS (close binary star-system), it will investigate on self-structuring in the disk under the impact of the distribution of leading parameters (density, velocity ...). The paper is considering the problem of development of the corona and will analyze the process of interaction of the plasma with the magnetic field in connection to support for the instabilities.展开更多
Two new solutions for non-constant-α force-free magnetic field are found analytically. Implications of the results to astrophysical solar plasmas as well tokamak plasmas are discussed.
The magnetosphere is the outermost layer of the geospace, and the interaction of the solar wind with the magnetosphere is the key element of the space weather cause-and-effect chain process from the Sun to Earth, whic...The magnetosphere is the outermost layer of the geospace, and the interaction of the solar wind with the magnetosphere is the key element of the space weather cause-and-effect chain process from the Sun to Earth, which is one of the most challenging scientific problems in the geospace weather study. The nonlinearity, multiple component, and time-dependent nature of the geospace make it very difficult to describe the physical process in geospace using traditional analytic analysis approach. Numerical simulations, a new research tool developed in recent decades, have a deep impact on the theory and application of the geospace. MHD simulations started at the end of the 1970s, and the initial study was limited to two-dimensional (2D) cases. Due to the intrinsic three-dimensional (3D) characteristics of the geospace, 3D MHD simulations emerged in the 1980s, in an attempt to model the large-scale structures and fundamental physical processes in the magnetosphere. They started to combine with the space exploration missions in the 1990s and make comparisons with observations. Physics-based space weather forecast models started to be developed in the 21st century. Currently only a few space-power countries such as USA and Japan have developed 3D magnetospheric MHD models. With the rapid advance of space science in China, we have developed a new global MHD model, namely PPMLR-MHD, which has high order spatial accuracy and low numerical dissipation. In this review, we will briefly introduce the global 3D MHD modeling, especially the PPMLR-MHD code, and summarize our recent work based on the PPMLR-MHD model, with an emphasis on the interaction of interplanetary shocks with the magnetosphere, large-scale current systems, reconnection voltage and transpolar potential drop, and Kelvin-Helmholtz (K-H) instability at the magnetopause.展开更多
Derivation of equivalent current systems(ECS)from a global magnetospheric magnetohydrodynamics(MHD)model is very useful in studying magnetosphere-ionosphere coupling,ground induction effects,and space weather forecast...Derivation of equivalent current systems(ECS)from a global magnetospheric magnetohydrodynamics(MHD)model is very useful in studying magnetosphere-ionosphere coupling,ground induction effects,and space weather forecast.In this study we introduce an improved method to derive the ECS from a global MHD model,which takes account of the obliqueness of the magnetic field lines.By comparing the ECS derived from this improved method and the previous method,we find that the main characteristics of the ECS derived from the two methods are generally consistent with each other,but the eastward-westward component of the geomagnetic perturbation calculated from the ECS derived from the improved method is much stronger than that from the previous method.We then compare the geomagnetic perturbation as a function of the interplanetary magnetic field(IMF)clock angle calculated from the ECS derived from both methods with the observations.The comparison indicates that the improved method can improve the performance of the simulation.Furthermore,it is found that the incomplete counterbalance of the geomagnetic effect produced by the ionospheric poloidal current and field-aligned current(FAC)contributes to most of the eastward-westward component of geomagnetic perturbation.展开更多
The concept of using an externally applied magnetic field to add the drag force of a hypersonic reentry vehicle during the blackout was proposed by Bush in 1958.The increased drag force is caused by electromagnetic fo...The concept of using an externally applied magnetic field to add the drag force of a hypersonic reentry vehicle during the blackout was proposed by Bush in 1958.The increased drag force is caused by electromagnetic force that is introduced by interaction between the applied magnetic field and the weakly ionized airflow around the reentry vehicle.We investigated the influences of magnetic field intensities on the drag forces of a reentry vehicle by three dimensional(3-D)magnetohydrodynamics(MHD)simulation.The results showed that the drag fore exerted on the vehicle reached 25 kN when the magnetic field was 0.4 T.The drag force increased with the enhanced intial magnetic field.The bow shock was also pushed far away from the vehicle when the magnetic field was strengthened.展开更多
We study the large time behavior of a 3-D MHD(magneto-hydrodynamical)-type system without magnetic diffusion introduced by Lin and Zhang(2014). By using the elementary energy method and interpolation technique, we pro...We study the large time behavior of a 3-D MHD(magneto-hydrodynamical)-type system without magnetic diffusion introduced by Lin and Zhang(2014). By using the elementary energy method and interpolation technique, we prove the global existence and decay estimate of smooth solution near the equilibrium state(x3, 0).展开更多
基金The project supported by National Natural Science Foundation of China under Grant No. 10475009 and the New Century Excellent Talents in Universities of China. I would like to thank Prof. Y.N. Huang for useful discussions.
文摘Some new approaches for nonlinear force-free magnetic field are presented and new exact solutions are found analytically. Examples are given and some implications of results to astrophysical solar plasmas as well as tokamak or/and spheromak plasmas are discussed.
基金The project supported by National Natural Science Foundation of China under Grant Nos.40104006,40204010,40374056,and 40336053
文摘Explosive events have been observed to occur consecutively in bursts at intermittent locations along theboundary near the opposite polarity. The aim of the present paper is to explore a possible mechanism to interpret thisburst-like characteristic of explosive events. The 2D magnetohydrodynamic (MHD) numerical simulations with resistivityhave been carried out to reproduce the intermittent spatial-temporal magnetic reconnection events taking place along thelong, compressible current sheet. The observed density enhancements in previously published results have been verifiedto be associated to magnetic reconnection sites. Late observational evidences, which support present attempts, have alsobeen found, at least in morphological evolution of the consecutive explosive events.
文摘We clarify how magnetic reconnection can be derived from magnetohydrodynamics (MHD) equations in a way that is easily understandable to university students. The essential mechanism governing the time evolution of the magnetic field is diffusion dynamics. The magnetic field is represented by two components. It is clarified that the diffusion of a component causes agene ration of another component that is initially zero and, accordingly, that the magnetic force lines are reconnected. For this reconnection to occur correctly, the initial magnetic field must be directed oppositely in the two regions, e.g., y 〉 0 and y 〈 O; must be concave (convex) for y 〉 0 (y 〈 0); and must be saturated foryfar from the x axis, which would indicate the existence of the current sheet. It will be clear that our comprehension based on diffusion runs parallel to the common qualitative explanation about the magnetic reconnection.
基金Supported by the National Natural Science Foundation of China under Grant No.10875098the Natural Science Foundation of Northwest Normal University under Grant No.NWNU-KJCXGC-03-48
文摘Starting from the governing equations for a quantum magnetoplasma including the electron spin -1/2 effects and quantum Bohm potential, we derive Korteweg-de Vries (KdV) equation of the system of quantum magneto- hydrodynamics (QMHD). The amplitude and width of magnetosonic soliton with different parameters in the system are studied. It is found that the normalized Zeeman energy E plays a crucial role, for E ≥ 1 the amplitude τmξ and the width we of solitary wave all decrease as E increases. That is, the introduction of spin quantum force modifies the shape of solitary magnetosonic waves and makes them more narrower and shallower.
文摘Based on results obtained from the study for MHD (magneto-hydrodynamics) of advective accretion disk, which are applied to real source showing typical values for CBS (close binary star-system), it will investigate on self-structuring in the disk under the impact of the distribution of leading parameters (density, velocity ...). The paper is considering the problem of development of the corona and will analyze the process of interaction of the plasma with the magnetic field in connection to support for the instabilities.
基金The project supported by National Natural Science Foundation of China under Grant No. 10475009 and the New Century Excellent Talents in Universities of China. The author would like to thank Prof. Y.N. Huang for useful discussions.
文摘Two new solutions for non-constant-α force-free magnetic field are found analytically. Implications of the results to astrophysical solar plasmas as well tokamak plasmas are discussed.
基金supported by the National Basic Research Program of China (Grant No.2012CB825602)National Natural Science Foundation of China (Grant Nos.41204118 & 41231067)in part by the Specialized Research Fund for State Key Laboratories of China
文摘The magnetosphere is the outermost layer of the geospace, and the interaction of the solar wind with the magnetosphere is the key element of the space weather cause-and-effect chain process from the Sun to Earth, which is one of the most challenging scientific problems in the geospace weather study. The nonlinearity, multiple component, and time-dependent nature of the geospace make it very difficult to describe the physical process in geospace using traditional analytic analysis approach. Numerical simulations, a new research tool developed in recent decades, have a deep impact on the theory and application of the geospace. MHD simulations started at the end of the 1970s, and the initial study was limited to two-dimensional (2D) cases. Due to the intrinsic three-dimensional (3D) characteristics of the geospace, 3D MHD simulations emerged in the 1980s, in an attempt to model the large-scale structures and fundamental physical processes in the magnetosphere. They started to combine with the space exploration missions in the 1990s and make comparisons with observations. Physics-based space weather forecast models started to be developed in the 21st century. Currently only a few space-power countries such as USA and Japan have developed 3D magnetospheric MHD models. With the rapid advance of space science in China, we have developed a new global MHD model, namely PPMLR-MHD, which has high order spatial accuracy and low numerical dissipation. In this review, we will briefly introduce the global 3D MHD modeling, especially the PPMLR-MHD code, and summarize our recent work based on the PPMLR-MHD model, with an emphasis on the interaction of interplanetary shocks with the magnetosphere, large-scale current systems, reconnection voltage and transpolar potential drop, and Kelvin-Helmholtz (K-H) instability at the magnetopause.
基金supported by the National Basic Research Program of China(Grant No.2012CB825602)National Natural Science Foundation of China(Grant Nos.41231067&41204110) in part by the Specialized Research Fund for State Key Laboratories of China
文摘Derivation of equivalent current systems(ECS)from a global magnetospheric magnetohydrodynamics(MHD)model is very useful in studying magnetosphere-ionosphere coupling,ground induction effects,and space weather forecast.In this study we introduce an improved method to derive the ECS from a global MHD model,which takes account of the obliqueness of the magnetic field lines.By comparing the ECS derived from this improved method and the previous method,we find that the main characteristics of the ECS derived from the two methods are generally consistent with each other,but the eastward-westward component of the geomagnetic perturbation calculated from the ECS derived from the improved method is much stronger than that from the previous method.We then compare the geomagnetic perturbation as a function of the interplanetary magnetic field(IMF)clock angle calculated from the ECS derived from both methods with the observations.The comparison indicates that the improved method can improve the performance of the simulation.Furthermore,it is found that the incomplete counterbalance of the geomagnetic effect produced by the ionospheric poloidal current and field-aligned current(FAC)contributes to most of the eastward-westward component of geomagnetic perturbation.
基金supported by the National Natural Science Foundation of China (Grant Nos. 41204105,41104093,41174122)the Chinese Academy of Sciences (Grant No. KZZD-EW-01-3)
文摘The concept of using an externally applied magnetic field to add the drag force of a hypersonic reentry vehicle during the blackout was proposed by Bush in 1958.The increased drag force is caused by electromagnetic force that is introduced by interaction between the applied magnetic field and the weakly ionized airflow around the reentry vehicle.We investigated the influences of magnetic field intensities on the drag forces of a reentry vehicle by three dimensional(3-D)magnetohydrodynamics(MHD)simulation.The results showed that the drag fore exerted on the vehicle reached 25 kN when the magnetic field was 0.4 T.The drag force increased with the enhanced intial magnetic field.The bow shock was also pushed far away from the vehicle when the magnetic field was strengthened.
基金supported by National Natural Science Foundation of China (Grant Nos. 11371039 and 11425103)
文摘We study the large time behavior of a 3-D MHD(magneto-hydrodynamical)-type system without magnetic diffusion introduced by Lin and Zhang(2014). By using the elementary energy method and interpolation technique, we prove the global existence and decay estimate of smooth solution near the equilibrium state(x3, 0).