The atomic structure of quasi one-dimensional(1D) van der Waals materials can be regarded as the stacking of atomic chains to form thin flakes or nanoribbons, which substantially differentiates them from typical two-d...The atomic structure of quasi one-dimensional(1D) van der Waals materials can be regarded as the stacking of atomic chains to form thin flakes or nanoribbons, which substantially differentiates them from typical two-dimensional(2D) layered materials and 1D nanotube/nanowire array. Here we present our studies on quasi 1D gold selenide(AuSe) that possesses highly anisotropic crystal structure, excellent electrical conductivity, giant magnetoresistance, and unusual reentrant metallic behavior. The low inplane symmetry of AuSe gives rise to its high anisotropy of vibrational behavior. In contrast, quasi 1D AuSe exhibits high in-plane electrical conductivity along the directions of both atomic chains and perpendicular one, which can be understood as a result of strong interchain interaction. We found that AuSe exhibits a near quadratic nonsaturating giant magnetoresistance of 1841% with the magnetic field perpendicular to its in-plane. We also observe unusual reentrant metallic behavior, which is caused by the carrier mismatch in the multiband transport. Our works help to establish fundamental understandings on quasi 1D van der Waals semimetallic AuSe and identify it as a new candidate for exploring giant magnetoresistance and compensated semimetals.展开更多
Though GaN nanoribbons (GaNNRs) with H atoms terminating both edges are nonmagnetic semiconductors, the extra dangling bond bands around the Fermi level lead to a transition from semiconducting to metallic, except f...Though GaN nanoribbons (GaNNRs) with H atoms terminating both edges are nonmagnetic semiconductors, the extra dangling bond bands around the Fermi level lead to a transition from semiconducting to metallic, except for the armchair edge GaNNRs (AGaNNRs) with bare N and Ga edges, which are still nonmagnetic semiconductors due to the strong coupling of the dangling bonds of dimeric N and Ga atoms at the same edge. The larger difference in the charge density (pUp_pdown) for edge bare N atoms and decaying for N sub-lattices away from the edge, as well as the smaller difference in the charge density for edge bare Ga atoms and without decaying for Ga sub-lattices away from the edge is consistent with the magnetic moment of a GaNNR with bare N edge being larger than that of a GaNNR with bare Ga edge. The magnetic moment of a zigzag edge GaNNR (ZGaNNR) with bare N (Ga) edge has nearly half the value of the magnetic moment of a AGaNNR with bare N (Ga) edge. Such a relationship also exists in the number of extra dangling bond states appearing around the Fermi level in the band structures. For ZGaNNRs, the magnetic moment of bare N and Ga edges is larger than either bare N edge or bare Ga edge, but smaller than their sum, implying that there exists an interaction between the dangling bonds at both edges of bare N and Ga edges.展开更多
基金This work was supported by the Research Grant Council of Hong Kong(N_PolyU540/17)the Shenzhen Science and Technology Innovation Commission(JCYJ20180507183424383)the Hong Kong Polytechnic University(G-SB79 and G-YBPS).
文摘The atomic structure of quasi one-dimensional(1D) van der Waals materials can be regarded as the stacking of atomic chains to form thin flakes or nanoribbons, which substantially differentiates them from typical two-dimensional(2D) layered materials and 1D nanotube/nanowire array. Here we present our studies on quasi 1D gold selenide(AuSe) that possesses highly anisotropic crystal structure, excellent electrical conductivity, giant magnetoresistance, and unusual reentrant metallic behavior. The low inplane symmetry of AuSe gives rise to its high anisotropy of vibrational behavior. In contrast, quasi 1D AuSe exhibits high in-plane electrical conductivity along the directions of both atomic chains and perpendicular one, which can be understood as a result of strong interchain interaction. We found that AuSe exhibits a near quadratic nonsaturating giant magnetoresistance of 1841% with the magnetic field perpendicular to its in-plane. We also observe unusual reentrant metallic behavior, which is caused by the carrier mismatch in the multiband transport. Our works help to establish fundamental understandings on quasi 1D van der Waals semimetallic AuSe and identify it as a new candidate for exploring giant magnetoresistance and compensated semimetals.
基金supported by the National Natural Science Foundation of China (Grant Nos. 51071098 and 11104175)the State Key Development for Basic Research of China (Grant No. 2010CB631002)
文摘Though GaN nanoribbons (GaNNRs) with H atoms terminating both edges are nonmagnetic semiconductors, the extra dangling bond bands around the Fermi level lead to a transition from semiconducting to metallic, except for the armchair edge GaNNRs (AGaNNRs) with bare N and Ga edges, which are still nonmagnetic semiconductors due to the strong coupling of the dangling bonds of dimeric N and Ga atoms at the same edge. The larger difference in the charge density (pUp_pdown) for edge bare N atoms and decaying for N sub-lattices away from the edge, as well as the smaller difference in the charge density for edge bare Ga atoms and without decaying for Ga sub-lattices away from the edge is consistent with the magnetic moment of a GaNNR with bare N edge being larger than that of a GaNNR with bare Ga edge. The magnetic moment of a zigzag edge GaNNR (ZGaNNR) with bare N (Ga) edge has nearly half the value of the magnetic moment of a AGaNNR with bare N (Ga) edge. Such a relationship also exists in the number of extra dangling bond states appearing around the Fermi level in the band structures. For ZGaNNRs, the magnetic moment of bare N and Ga edges is larger than either bare N edge or bare Ga edge, but smaller than their sum, implying that there exists an interaction between the dangling bonds at both edges of bare N and Ga edges.