Bi1-xYbxFeO3(0〈x〈0.2) powders have been synthesized using a sol-gel method. The X- ray diffraction data show a structural transition from the rhombohedral R3c phase to the orthorhombic Pnma phase between x=0.1 and...Bi1-xYbxFeO3(0〈x〈0.2) powders have been synthesized using a sol-gel method. The X- ray diffraction data show a structural transition from the rhombohedral R3c phase to the orthorhombic Pnma phase between x=0.1 and 0.125, which should induce a ferroelectric- paraelectric transformation. The phase transition is also proven by the Raman spectroscopy. A moderate signal on magnetization appears to illustrate the enhancement of magnetization at the transformation boundary, which is suggested to be the destruction of the spin cycloid structure at low concentration. The appearance of antiferromagnetic ordering is proposed to account for the afterward reduction of the magnetization at high concentration.展开更多
Oolitic hematite is an iron ore resource with rich reserves,complex composition,low grade,fine disseminated particle sizes,and a unique oolitic structure.In this study,a microwave-assisted suspension magnetization roa...Oolitic hematite is an iron ore resource with rich reserves,complex composition,low grade,fine disseminated particle sizes,and a unique oolitic structure.In this study,a microwave-assisted suspension magnetization roasting technology was proposed to recover and utilize the ore.The results showed that under the conditions of microwave pretreatment temperature of 1050℃ for 2 min,a magnetic concentrate with an iron grade of 58.72%at a recovery of 89.32%was obtained by microwave suspension magnetization roasting and magnetic separation.Moreover,compared with the no microwave pretreatment case,the iron grade and recovery increased by 3.17%and 1.58%,respectively.Microwave pretreatment increased the saturation magnetization of the roasted products from 24.974 to 39.236(A∙m^(2))/kg and the saturation susceptibility from 0.179×10^(−3) m^(3)/kg to 0.283×10^(−3) m^(3)/kg.Microcracks were formed between the iron and gangue minerals,and they gradually extended to the core of oolite with the increase in the pretreatment time.The reducing gas diffused from outside to inside along the microcracks,which promoted the selective transformation of the weak magnetic hematite into the strong magnetic magnetite.展开更多
基金This work was supported by the Cultivation Fund of the Key Scientific and Technical Innovation Project, the Ministry of Education of China (No.708070), the National Natural Science Foundation of China (No.10874046 and No.11104081), and the Fundamental Research Funds for the Central Universities (No.2012zz0078).
文摘Bi1-xYbxFeO3(0〈x〈0.2) powders have been synthesized using a sol-gel method. The X- ray diffraction data show a structural transition from the rhombohedral R3c phase to the orthorhombic Pnma phase between x=0.1 and 0.125, which should induce a ferroelectric- paraelectric transformation. The phase transition is also proven by the Raman spectroscopy. A moderate signal on magnetization appears to illustrate the enhancement of magnetization at the transformation boundary, which is suggested to be the destruction of the spin cycloid structure at low concentration. The appearance of antiferromagnetic ordering is proposed to account for the afterward reduction of the magnetization at high concentration.
基金Projects(51874071,51734005,52104257)supported by the National Natural Science Foundation of ChinaProject(161045)supported by the Fok Ying Tung Education Foundation for Yong Teachers in the Higher Education Institutions of China。
文摘Oolitic hematite is an iron ore resource with rich reserves,complex composition,low grade,fine disseminated particle sizes,and a unique oolitic structure.In this study,a microwave-assisted suspension magnetization roasting technology was proposed to recover and utilize the ore.The results showed that under the conditions of microwave pretreatment temperature of 1050℃ for 2 min,a magnetic concentrate with an iron grade of 58.72%at a recovery of 89.32%was obtained by microwave suspension magnetization roasting and magnetic separation.Moreover,compared with the no microwave pretreatment case,the iron grade and recovery increased by 3.17%and 1.58%,respectively.Microwave pretreatment increased the saturation magnetization of the roasted products from 24.974 to 39.236(A∙m^(2))/kg and the saturation susceptibility from 0.179×10^(−3) m^(3)/kg to 0.283×10^(−3) m^(3)/kg.Microcracks were formed between the iron and gangue minerals,and they gradually extended to the core of oolite with the increase in the pretreatment time.The reducing gas diffused from outside to inside along the microcracks,which promoted the selective transformation of the weak magnetic hematite into the strong magnetic magnetite.