Deexcitation energies of superdeformed secondary minima of odd-odd A u and T1 isotopes are investigated with the relativistic mean field (RMF) model where the isoscalar-isovector coupling is included to change the s...Deexcitation energies of superdeformed secondary minima of odd-odd A u and T1 isotopes are investigated with the relativistic mean field (RMF) model where the isoscalar-isovector coupling is included to change the symmetry energy. It is verified by the theoretical analysis and numerical results that the deexcitation energies of superdeformed secondary minima relative to the ground states in these heavy nuclei are sensitive to differences in the symmetry energy. In particular, the linear correlation between the deexeitation energies of odd-odd Au and T1 isotopes and the neutron skin thickness in 208Pb is established. Moreover, explorations are extended to superdeformed candidates of other mass regions. It is found that the linear correlation can even be established between the deexcitation energies and the symmetry pressure at subsaturation density. These indicate that deexcitation energies can serve as a probe to the density dependence of the symmetry energy.展开更多
Non-metallic particles and metallic impurities present in the feedstock affect the electrical and mechanical properties of high quality silicon which is used in critical applications such as photovoltaic solar cells a...Non-metallic particles and metallic impurities present in the feedstock affect the electrical and mechanical properties of high quality silicon which is used in critical applications such as photovoltaic solar cells and electronic devices. SiC particles strongly deteriorate the mechanical properties of photovoltaic cells and cause shunting problem. Therefore, these particles should be removed from silicon before solar cells are fabricated from this material. Separation of non-metallic particles from liquid metals by imposing an electromagnetic field was identified as an enhanced technology to produce ultra pure metals. Application of this method for removal of SiC particles from metallurgical grade silicon (MG-Si) was presented. Numerical methods based on a combination of classical models for inclusion removal and computational fluid dynamics (CFD) were developed to calculate the particle concentration and separation efficiency from the melt. In order to check efficiency of the method, several experiments were done using an induction furnace. The experimental results show that this method can be effectively applied to purifying silicon melts from the non-metallic inclusions. The results are in a good agreement with the predictions made by the model.展开更多
If a coherent perturbation field is used to couple the excited level of the coupling transition in the five-level K-type atom with another higher excited level, the two-photon electromagnetically induced transparency ...If a coherent perturbation field is used to couple the excited level of the coupling transition in the five-level K-type atom with another higher excited level, the two-photon electromagnetically induced transparency can be locally modulated by altering the parameters of the additional perturbation field. With different detunings of the coherent perturbation field, the absorption peak or transparency window with sharp and high-contrast speetrM feature can be generated in the two-photon absorption spectrum. The physical interpretation of these phenomena is given in terms of the dressed states.展开更多
We have demonstrated the Autler-Townes (AT) splitting of the four-wave mixing (FWM) process and the six-wave mixing (SWM) process in an elec tromag netically induced transparency (EIT) window in five-level atomic vapo...We have demonstrated the Autler-Townes (AT) splitting of the four-wave mixing (FWM) process and the six-wave mixing (SWM) process in an elec tromag netically induced transparency (EIT) window in five-level atomic vapor of 87 Rb. Moreover we discuss interactions of multi-dressed states. The experimental results agree well with the theoretical analysis.展开更多
We elucidate a recently emergent framework in unifying the two families of high temperature (high To) superconductors, cuprates and iron-based superconductors. The unification suggests that the latter is simply the ...We elucidate a recently emergent framework in unifying the two families of high temperature (high To) superconductors, cuprates and iron-based superconductors. The unification suggests that the latter is simply the counterpart of the former to realize robust extended s-wave pairing symmetries in a square lattice. The unification identifies that the key ingredients (gene) of high Tc superconductors is a quasi two dimensional electronic environment in which the d-orbitals of cations that partic- ipate in strong in-plane couplings to the p-orbitals of anions are isolated near Fermi energy. With this gene, the superexchange magnetic interactions mediated by anions could maximize their contributions to superconductivity. Creating the gene requires special arrangements between local electronic structures and crystal lattice structures. The speciality explains why high Tc superconductors are so rare. An explicit prediction is made to realize high Tc superconductivity in Co/Ni-based materials with a quasi two dimensional hexagonal lattice structure formed by trigonal bipyramidal complexes.展开更多
Discerning electromagnetically induced transparency(EIT) from Autler–Townes splitting(ATS) is a significant issue in quantum optics and has attracted wide attention in various three-level configurations. Here we pres...Discerning electromagnetically induced transparency(EIT) from Autler–Townes splitting(ATS) is a significant issue in quantum optics and has attracted wide attention in various three-level configurations. Here we present a detailed study of EIT and ATS in a five-level atomic system considered to be composed of a four-level Y-type subsystem and a three-level Λ-type subsystem. In our theoretical calculations with standard density matrix formalism and steadystate approximation, we obtain the general analytical expression of the first-order matrix element responsible for the probe-field absorption. In light of the well-known three-level EIT and ATS criteria, we numerically show an intersection of EIT with ATS for the Y-type subsystem. Furthermore, we show that an EIT dip is sandwiched between two ATS dips(i.e., multi-dip mixture of EIT and ATS) in the absorption line for the five-level system, which can be explained by the dressed-state theory and Fano interference.展开更多
基金Supported in part by the National Natural Science Foundation of China under Grant No.10975033the China Jiangsu Provincial Natural Science Foundation under Grant No.BK2009261+1 种基金 the Knowledge Innovation Project of the Chinese Academy of Sciences under Grant No.KJXC3-SYW-N2 the China Major State Basic Research Development Program under Grant No.2007CB815004
文摘Deexcitation energies of superdeformed secondary minima of odd-odd A u and T1 isotopes are investigated with the relativistic mean field (RMF) model where the isoscalar-isovector coupling is included to change the symmetry energy. It is verified by the theoretical analysis and numerical results that the deexcitation energies of superdeformed secondary minima relative to the ground states in these heavy nuclei are sensitive to differences in the symmetry energy. In particular, the linear correlation between the deexeitation energies of odd-odd Au and T1 isotopes and the neutron skin thickness in 208Pb is established. Moreover, explorations are extended to superdeformed candidates of other mass regions. It is found that the linear correlation can even be established between the deexcitation energies and the symmetry pressure at subsaturation density. These indicate that deexcitation energies can serve as a probe to the density dependence of the symmetry energy.
文摘Non-metallic particles and metallic impurities present in the feedstock affect the electrical and mechanical properties of high quality silicon which is used in critical applications such as photovoltaic solar cells and electronic devices. SiC particles strongly deteriorate the mechanical properties of photovoltaic cells and cause shunting problem. Therefore, these particles should be removed from silicon before solar cells are fabricated from this material. Separation of non-metallic particles from liquid metals by imposing an electromagnetic field was identified as an enhanced technology to produce ultra pure metals. Application of this method for removal of SiC particles from metallurgical grade silicon (MG-Si) was presented. Numerical methods based on a combination of classical models for inclusion removal and computational fluid dynamics (CFD) were developed to calculate the particle concentration and separation efficiency from the melt. In order to check efficiency of the method, several experiments were done using an induction furnace. The experimental results show that this method can be effectively applied to purifying silicon melts from the non-metallic inclusions. The results are in a good agreement with the predictions made by the model.
基金Supported by National Natural Science Foundation of China under Grant Nos.10775100 and 10974137
文摘If a coherent perturbation field is used to couple the excited level of the coupling transition in the five-level K-type atom with another higher excited level, the two-photon electromagnetically induced transparency can be locally modulated by altering the parameters of the additional perturbation field. With different detunings of the coherent perturbation field, the absorption peak or transparency window with sharp and high-contrast speetrM feature can be generated in the two-photon absorption spectrum. The physical interpretation of these phenomena is given in terms of the dressed states.
文摘We have demonstrated the Autler-Townes (AT) splitting of the four-wave mixing (FWM) process and the six-wave mixing (SWM) process in an elec tromag netically induced transparency (EIT) window in five-level atomic vapor of 87 Rb. Moreover we discuss interactions of multi-dressed states. The experimental results agree well with the theoretical analysis.
基金supported by the National Basic Research Program of ChinaNational Natural Science Foundation of Chinathe Strategic Priority Research Program of Chinese Academy of Sciences
文摘We elucidate a recently emergent framework in unifying the two families of high temperature (high To) superconductors, cuprates and iron-based superconductors. The unification suggests that the latter is simply the counterpart of the former to realize robust extended s-wave pairing symmetries in a square lattice. The unification identifies that the key ingredients (gene) of high Tc superconductors is a quasi two dimensional electronic environment in which the d-orbitals of cations that partic- ipate in strong in-plane couplings to the p-orbitals of anions are isolated near Fermi energy. With this gene, the superexchange magnetic interactions mediated by anions could maximize their contributions to superconductivity. Creating the gene requires special arrangements between local electronic structures and crystal lattice structures. The speciality explains why high Tc superconductors are so rare. An explicit prediction is made to realize high Tc superconductivity in Co/Ni-based materials with a quasi two dimensional hexagonal lattice structure formed by trigonal bipyramidal complexes.
基金Supported by the National Natural Science Foundation of China under Grant Nos.11274132,11547208the Science Foundation of China Three Gorges University
文摘Discerning electromagnetically induced transparency(EIT) from Autler–Townes splitting(ATS) is a significant issue in quantum optics and has attracted wide attention in various three-level configurations. Here we present a detailed study of EIT and ATS in a five-level atomic system considered to be composed of a four-level Y-type subsystem and a three-level Λ-type subsystem. In our theoretical calculations with standard density matrix formalism and steadystate approximation, we obtain the general analytical expression of the first-order matrix element responsible for the probe-field absorption. In light of the well-known three-level EIT and ATS criteria, we numerically show an intersection of EIT with ATS for the Y-type subsystem. Furthermore, we show that an EIT dip is sandwiched between two ATS dips(i.e., multi-dip mixture of EIT and ATS) in the absorption line for the five-level system, which can be explained by the dressed-state theory and Fano interference.