We investigate the electronic and magnetic properties of the diluted magnetic semiconductors Zn1-xMnxS(001) thin films with different Mn doping concentrations using the total energy density functional theory. The en...We investigate the electronic and magnetic properties of the diluted magnetic semiconductors Zn1-xMnxS(001) thin films with different Mn doping concentrations using the total energy density functional theory. The energy stability and density of states of a single Mn atom and two Mn atoms at various doped configurations and different magnetic coupling state were calculated. Different doping configurations have different degrees of p-d hybridization, and because Mn atoms are located in different crystal-field environment, the 3d projected densities of states peak splitting of different Mn doping configurations are quite different. In the two Mn atoms doped, the calculated ground states of three kinds of stable configurations are anti-ferromagnetic state. We analyzed the 3d density of states diagram of three kinds of energy stability configurations with the two Mn atoms in different magnetic coupling state. When the two Mn atoms are ferromagnetic coupling, due to d-d electron interactions, density of states of anti-bonding state have significant broadening peaks. As the concentration of Mn atoms increases, there is a tendency for Mn atoms to form nearest neighbors and cluster around S. For such these configurations, the antiferromagnetic coupling between Mn atoms is energetically more favorable.展开更多
[SiO2/FePt]5/Ag thin films were deposited by RF magnetron sputtering on the glass substrates and post annealing at 550 ℃ for 30 min in vacuum. Vibrating sample magnetometer and X-ray diffraction analyser were applied...[SiO2/FePt]5/Ag thin films were deposited by RF magnetron sputtering on the glass substrates and post annealing at 550 ℃ for 30 min in vacuum. Vibrating sample magnetometer and X-ray diffraction analyser were applied to study the magnetic properties and microstructures of the films. The results show that without Ag underlayer [SiO2/FePt]5 films deposited onto the glass are FCC disordered; with the addition of Ag underlayer [SiO]FePt]5/Ag films are changed into L10 and (111) mixed texture. The variation of the SiO2 nonmagnetic layer thickness in [SiO2/FePt]5/Ag films indicates that SiO2-doping plays an important role in improving the order parameter and the perpendicular magnetic anisotropy, and reducing the grain size and intergrain interactions. By controlling SiO2 thickness the highly perpendicular magnetic anisotropy can be obtained in the [SiO2 (0.6 nm)/FePt (3 nm)]5/Ag (50 nm) films and highly (001)-oriented films can be obtained in the [SiO2 (2 nm)/FePt (3 nm)]5/Ag (50 nm) films.展开更多
Local segregation in Cu-In precursors and its effects on the element distribution and microstructures of selenized CuInSe2 thin films were investigated. Cu-In precursors with an ideal total mole ratio of Cu to In of 0...Local segregation in Cu-In precursors and its effects on the element distribution and microstructures of selenized CuInSe2 thin films were investigated. Cu-In precursors with an ideal total mole ratio of Cu to In of 0.92 were prepared by middle frequency alternating current magnetron sputtering with Cu-In alloy target, then CuInSe2 absorbers for solar cells were formed by selenization process in selenium atmosphere. Scanning electron microscope and energy dispersive X-ray spectroscope were used respectively to observe the surface morphologies and determine the compositions of both Cu-In precursors and CuInSe2 thin films. Their microstructures were characterized by X-ray diffractometry and Raman spectroscope. The results show that Cu-In precursors are mainly composed of (Cu11In9) phase with In-rich solid solution. Stoichiometric CuInSe2 thin films with a homogeneous element distribution and single chalcopyrite phase can be synthesized from a segregated Cu-In precursor film with an ideal total mole ratio of Cu to In of 0.92. CuInSe2 thin film shows P-type conductivity and its resistivity reaches 1.2×103Ω·cm.展开更多
Al-doped ZnO(AZO)thin films were deposited on glass substrates by rf-sputtering at room temperature.The effects of substrate rotation speed(ωS)on the morphological,structural,optical and electrical properties were in...Al-doped ZnO(AZO)thin films were deposited on glass substrates by rf-sputtering at room temperature.The effects of substrate rotation speed(ωS)on the morphological,structural,optical and electrical properties were investigated.SEM transversal images show that the substrate rotation produces dense columnar structures which were found to be better defined under substrate rotation.AFM images show that the surface particles of the samples formed under substrate rotation are smaller and denser than those of a stationary one,leading to smaller grain sizes.XRD results show that all films have hexagonal wurtzite structure and preferred c-axis orientation with a tensile stress along the c-axis.The average optical transmittance was above90%in UV-Vis region.The lowest resistivity value(8.5×10?3Ω·cm)was achieved atωS=0r/min,with a carrier concentration of1.8×1020cm?3,and a Hall mobility of4.19cm2/(V·s).For all other samples,the substrate rotation induced changes in the carrier concentration and Hall mobility which resulted in the increasing of electrical resistivity.These results indicate that the morphology,structure,optical and electrical properties of the AZO thin films are strongly affected by the substrate rotation speed.展开更多
The purpose of this paper is to demonstrate and investigate the concepts of new deployable boom systems, which consist of the BCON (braid coated bi-convex tape) boom and the SMA-BCON (braid coated bi-shape memory a...The purpose of this paper is to demonstrate and investigate the concepts of new deployable boom systems, which consist of the BCON (braid coated bi-convex tape) boom and the SMA-BCON (braid coated bi-shape memory alloy convex tape) boom. Both booms are developed for the deployable membrane structures such as solar sails, thin membrane solar array panels, deorbit mechanisms for small satellites and reflectors of space solar power satellite, etc. BCON booms can store around polygonal or cylindrical center hub, and the booms can deploy by the stepwise manner by releasing a constraint mechanism which pins the boons into two or three points for the total length. SMA-BCON booms are mainly developed for a square center body systems, and SMA is adapted on the bent po^nts of the booms where stored around each edge of the center hub. Through the deployment experiments of both booms, the stepwise deployment behavior and its tendency are obtained. The design concept of BCON boom and SMA-BCON hnnm i~ demonstrated through this study.展开更多
The Nd Fe B/Co multilayer films were prepared by magnetron sputtering. After that, the samples were annealed at 600 ℃ for 20 min. The surface morphology, phase structures and magnetic properties of Mo(50 nm)/[Nd F...The Nd Fe B/Co multilayer films were prepared by magnetron sputtering. After that, the samples were annealed at 600 ℃ for 20 min. The surface morphology, phase structures and magnetic properties of Mo(50 nm)/[Nd Fe B(100 nm)/Co(y)]×10/Mo(50 nm) thin films were researched by AFM, XRD and VSM, respectively. The results show that the films show stronger perpendicular magnetic anisotropy. When the thickness of Co layers is 10 nm, the coercivity Hc⊥ is the maximum, 295 k A/m. However, for y=10-20, the reduced remanence M/Ms of films has increased. When the thickness of Co layers is 20-30 nm, the Nd Fe B/Co multilayer films obtained more superior magnetic properties with M/Ms =0.95.展开更多
The microstructure and magnetic properties of cobalt ferrite thin films deposited by the sputtering method on an Fe3o4 un- der-layer were investigated at different post-annealing temperatures. Results show that the Fe...The microstructure and magnetic properties of cobalt ferrite thin films deposited by the sputtering method on an Fe3o4 un- der-layer were investigated at different post-annealing temperatures. Results show that the Fe3o4 under-layer can accelerate the grain growth of cobalt ferrite films due to the phase transformation of the Fe3o4 under-layer at about 400℃-500℃. By intro- ducing the Fe3O4 under-layer, cobalt ferrite nanocrystalline thin films with high coercivity can be obtained at lower post-annealing temperatures.展开更多
Patterned ferromagnetic thin film shows promising applications in ultra-high density magnetic storage,magnetoresistive transducer,magnetic random access memory and many other devices.Since the performance of these dev...Patterned ferromagnetic thin film shows promising applications in ultra-high density magnetic storage,magnetoresistive transducer,magnetic random access memory and many other devices.Since the performance of these devices is closely associated with the magnetic properties of the etched patterns,it is necessary to study the effects of freshly etched surface oxidation on the magnetic properties of the patterned microstructures.In the current work,were carried out an X-ray Magnetic Circular Dichroism(XMCD) study on a 50 nm Co 0.9 Fe 0.1 continuous thin film and a related patterned Co 0.9 Fe 0.1 grating structure etched with a 2 μm period.Based on the sum rules,the spin and orbital moments were calculated for these two samples,respectively.The results indicated that the spin and orbital moments of grating structure(1.34μ B and 0.24μ B,respectively) decreased 17.3% compared with the corresponding continuous film(1.62μ B and 0.29μ B,respectively).We proposed that the moment decreasing of the patterned grating structure was mainly caused by the etched surface oxidation during the pattern manufacture process.The oxidation ratio of Co element in the patterned grating structure is 14.4% calculated from X-ray absorption spectroscopy(XAS) measurement.Considering the oxidation ratio,we amend the spin and orbital moment of Co and the amended result is basically in accordance with that of continuous film,demonstrating that the difference of the spin and orbital moments between the sub-micron grating unit and the continuous film is really caused by the oxidation.展开更多
The transparent semiconductors of Ti and Ga-incorporated ZnO(TGZO) thin films were prepared by radio frequency(RF) magnetron sputtering onto glass substrates. The effects of discharge power on the physical properties ...The transparent semiconductors of Ti and Ga-incorporated ZnO(TGZO) thin films were prepared by radio frequency(RF) magnetron sputtering onto glass substrates. The effects of discharge power on the physical properties of thin films are studied. Experimental results show that all nanocrystalline TGZO thin films possess preferential orientation along the(002) plane. The discharge power significantly affects the crystal structure and optical properties of thin films. When the discharge power is 200 W, the TGZO thin film has the optimal crystalline quality and optical properties, with the narrowest full width at half-maximum(FWHM) of 1.76×10^(-3) rad, the largest average grain size of 82.4 nm and the highest average transmittance of 84.3% in the visible range. The optical gaps of thin films are estimated by the Tauc's relation and observed to increase firstly and then decrease with the increase of the discharge power. In addition, the optical parameters, including refractive index, extinction coefficient, dielectric function and dissipation factor of the thin films, are determined by optical characterization methods. The dispersion behavior of the refractive index is also analyzed using the Sellmeier's dispersion model.展开更多
In this paper, the structure and magnetic properties of FeRh alloy thin films with a small amount of Pt doping fabricated onto a glass substrate by sputtering are investigated systematically. XRD results show that the...In this paper, the structure and magnetic properties of FeRh alloy thin films with a small amount of Pt doping fabricated onto a glass substrate by sputtering are investigated systematically. XRD results show that the diffraction pattern of as-deposited film exhibits only nonmagnetic y phase. After annealing, the disordered γphase transforms to an ordered α' phase. The temperature dependence of saturation magnetization of different annealing times and Pt contents are characterized. The phase transition temperature increases as the Pt component is increased, but the saturation magnetization reduces as the Pt component is in- creased. These results may be caused by the growth of the disordered γ phase.展开更多
基金This work was supported by the National Natural Science Foundation of China (No.60776039 and No.60406005), the Natural Science Foundation of Beijing (No.3062016), and the School Foundation of Beijing Jiaotong University.
文摘We investigate the electronic and magnetic properties of the diluted magnetic semiconductors Zn1-xMnxS(001) thin films with different Mn doping concentrations using the total energy density functional theory. The energy stability and density of states of a single Mn atom and two Mn atoms at various doped configurations and different magnetic coupling state were calculated. Different doping configurations have different degrees of p-d hybridization, and because Mn atoms are located in different crystal-field environment, the 3d projected densities of states peak splitting of different Mn doping configurations are quite different. In the two Mn atoms doped, the calculated ground states of three kinds of stable configurations are anti-ferromagnetic state. We analyzed the 3d density of states diagram of three kinds of energy stability configurations with the two Mn atoms in different magnetic coupling state. When the two Mn atoms are ferromagnetic coupling, due to d-d electron interactions, density of states of anti-bonding state have significant broadening peaks. As the concentration of Mn atoms increases, there is a tendency for Mn atoms to form nearest neighbors and cluster around S. For such these configurations, the antiferromagnetic coupling between Mn atoms is energetically more favorable.
基金Project(10574085) supported by the National Natural Science Foundation of ChinaProject(207020) supported by the Science Technology Key Project of the Ministry of Education, China
文摘[SiO2/FePt]5/Ag thin films were deposited by RF magnetron sputtering on the glass substrates and post annealing at 550 ℃ for 30 min in vacuum. Vibrating sample magnetometer and X-ray diffraction analyser were applied to study the magnetic properties and microstructures of the films. The results show that without Ag underlayer [SiO2/FePt]5 films deposited onto the glass are FCC disordered; with the addition of Ag underlayer [SiO]FePt]5/Ag films are changed into L10 and (111) mixed texture. The variation of the SiO2 nonmagnetic layer thickness in [SiO2/FePt]5/Ag films indicates that SiO2-doping plays an important role in improving the order parameter and the perpendicular magnetic anisotropy, and reducing the grain size and intergrain interactions. By controlling SiO2 thickness the highly perpendicular magnetic anisotropy can be obtained in the [SiO2 (0.6 nm)/FePt (3 nm)]5/Ag (50 nm) films and highly (001)-oriented films can be obtained in the [SiO2 (2 nm)/FePt (3 nm)]5/Ag (50 nm) films.
基金Project(2004AA513023) supported by the National High Technology Research and Development Program of China
文摘Local segregation in Cu-In precursors and its effects on the element distribution and microstructures of selenized CuInSe2 thin films were investigated. Cu-In precursors with an ideal total mole ratio of Cu to In of 0.92 were prepared by middle frequency alternating current magnetron sputtering with Cu-In alloy target, then CuInSe2 absorbers for solar cells were formed by selenization process in selenium atmosphere. Scanning electron microscope and energy dispersive X-ray spectroscope were used respectively to observe the surface morphologies and determine the compositions of both Cu-In precursors and CuInSe2 thin films. Their microstructures were characterized by X-ray diffractometry and Raman spectroscope. The results show that Cu-In precursors are mainly composed of (Cu11In9) phase with In-rich solid solution. Stoichiometric CuInSe2 thin films with a homogeneous element distribution and single chalcopyrite phase can be synthesized from a segregated Cu-In precursor film with an ideal total mole ratio of Cu to In of 0.92. CuInSe2 thin film shows P-type conductivity and its resistivity reaches 1.2×103Ω·cm.
文摘Al-doped ZnO(AZO)thin films were deposited on glass substrates by rf-sputtering at room temperature.The effects of substrate rotation speed(ωS)on the morphological,structural,optical and electrical properties were investigated.SEM transversal images show that the substrate rotation produces dense columnar structures which were found to be better defined under substrate rotation.AFM images show that the surface particles of the samples formed under substrate rotation are smaller and denser than those of a stationary one,leading to smaller grain sizes.XRD results show that all films have hexagonal wurtzite structure and preferred c-axis orientation with a tensile stress along the c-axis.The average optical transmittance was above90%in UV-Vis region.The lowest resistivity value(8.5×10?3Ω·cm)was achieved atωS=0r/min,with a carrier concentration of1.8×1020cm?3,and a Hall mobility of4.19cm2/(V·s).For all other samples,the substrate rotation induced changes in the carrier concentration and Hall mobility which resulted in the increasing of electrical resistivity.These results indicate that the morphology,structure,optical and electrical properties of the AZO thin films are strongly affected by the substrate rotation speed.
文摘The purpose of this paper is to demonstrate and investigate the concepts of new deployable boom systems, which consist of the BCON (braid coated bi-convex tape) boom and the SMA-BCON (braid coated bi-shape memory alloy convex tape) boom. Both booms are developed for the deployable membrane structures such as solar sails, thin membrane solar array panels, deorbit mechanisms for small satellites and reflectors of space solar power satellite, etc. BCON booms can store around polygonal or cylindrical center hub, and the booms can deploy by the stepwise manner by releasing a constraint mechanism which pins the boons into two or three points for the total length. SMA-BCON booms are mainly developed for a square center body systems, and SMA is adapted on the bent po^nts of the booms where stored around each edge of the center hub. Through the deployment experiments of both booms, the stepwise deployment behavior and its tendency are obtained. The design concept of BCON boom and SMA-BCON hnnm i~ demonstrated through this study.
文摘The Nd Fe B/Co multilayer films were prepared by magnetron sputtering. After that, the samples were annealed at 600 ℃ for 20 min. The surface morphology, phase structures and magnetic properties of Mo(50 nm)/[Nd Fe B(100 nm)/Co(y)]×10/Mo(50 nm) thin films were researched by AFM, XRD and VSM, respectively. The results show that the films show stronger perpendicular magnetic anisotropy. When the thickness of Co layers is 10 nm, the coercivity Hc⊥ is the maximum, 295 k A/m. However, for y=10-20, the reduced remanence M/Ms of films has increased. When the thickness of Co layers is 20-30 nm, the Nd Fe B/Co multilayer films obtained more superior magnetic properties with M/Ms =0.95.
基金supported by the National Natural Science Foundation of China (Grant No. 61071028)the NCET (Grant No. 08-0089)the RFDP (Grant No. 20100185110024)
文摘The microstructure and magnetic properties of cobalt ferrite thin films deposited by the sputtering method on an Fe3o4 un- der-layer were investigated at different post-annealing temperatures. Results show that the Fe3o4 under-layer can accelerate the grain growth of cobalt ferrite films due to the phase transformation of the Fe3o4 under-layer at about 400℃-500℃. By intro- ducing the Fe3O4 under-layer, cobalt ferrite nanocrystalline thin films with high coercivity can be obtained at lower post-annealing temperatures.
基金supported by the National Natural Science Foundation of China (Grant No. 10274073)the Post-doctoral Research Start-up Funding of Anhui University of Architecture (Grant No. K02553)the Open Project of Building Energy Conservation Institute of Anhui University of Architecture (Grant No. K02592)
文摘Patterned ferromagnetic thin film shows promising applications in ultra-high density magnetic storage,magnetoresistive transducer,magnetic random access memory and many other devices.Since the performance of these devices is closely associated with the magnetic properties of the etched patterns,it is necessary to study the effects of freshly etched surface oxidation on the magnetic properties of the patterned microstructures.In the current work,were carried out an X-ray Magnetic Circular Dichroism(XMCD) study on a 50 nm Co 0.9 Fe 0.1 continuous thin film and a related patterned Co 0.9 Fe 0.1 grating structure etched with a 2 μm period.Based on the sum rules,the spin and orbital moments were calculated for these two samples,respectively.The results indicated that the spin and orbital moments of grating structure(1.34μ B and 0.24μ B,respectively) decreased 17.3% compared with the corresponding continuous film(1.62μ B and 0.29μ B,respectively).We proposed that the moment decreasing of the patterned grating structure was mainly caused by the etched surface oxidation during the pattern manufacture process.The oxidation ratio of Co element in the patterned grating structure is 14.4% calculated from X-ray absorption spectroscopy(XAS) measurement.Considering the oxidation ratio,we amend the spin and orbital moment of Co and the amended result is basically in accordance with that of continuous film,demonstrating that the difference of the spin and orbital moments between the sub-micron grating unit and the continuous film is really caused by the oxidation.
基金supported by the National Natural Science Foundation of China(No.11504436)the Natural Science Foundation of Hubei Province(No.2015CFB364)the Fundamental Research Funds for the Central Universities(Nos.CZW14019 and CZW15045)
文摘The transparent semiconductors of Ti and Ga-incorporated ZnO(TGZO) thin films were prepared by radio frequency(RF) magnetron sputtering onto glass substrates. The effects of discharge power on the physical properties of thin films are studied. Experimental results show that all nanocrystalline TGZO thin films possess preferential orientation along the(002) plane. The discharge power significantly affects the crystal structure and optical properties of thin films. When the discharge power is 200 W, the TGZO thin film has the optimal crystalline quality and optical properties, with the narrowest full width at half-maximum(FWHM) of 1.76×10^(-3) rad, the largest average grain size of 82.4 nm and the highest average transmittance of 84.3% in the visible range. The optical gaps of thin films are estimated by the Tauc's relation and observed to increase firstly and then decrease with the increase of the discharge power. In addition, the optical parameters, including refractive index, extinction coefficient, dielectric function and dissipation factor of the thin films, are determined by optical characterization methods. The dispersion behavior of the refractive index is also analyzed using the Sellmeier's dispersion model.
基金supported by the National Natural Science Foundation of China (Grant No. 50901052)the Program for Young Excellent Talents in Tongji University (Grant No. 2009KJ003)the "Chen Guang" Project(Grant No. 10CG21) of the Shanghai Municipal Education Commission and Shanghai Education Development Foundation
文摘In this paper, the structure and magnetic properties of FeRh alloy thin films with a small amount of Pt doping fabricated onto a glass substrate by sputtering are investigated systematically. XRD results show that the diffraction pattern of as-deposited film exhibits only nonmagnetic y phase. After annealing, the disordered γphase transforms to an ordered α' phase. The temperature dependence of saturation magnetization of different annealing times and Pt contents are characterized. The phase transition temperature increases as the Pt component is increased, but the saturation magnetization reduces as the Pt component is in- creased. These results may be caused by the growth of the disordered γ phase.