根据磁谐振等效电路原理,设计出了工作在X波段的基于变异开口谐振环(split ring resonators)结构的新型双频带磁谐振特异材料.由于内外环间具有弱耦合的优越特性,所提出的磁谐振特异材料的两个工作频点可以较为方便地调节.该研究成果为...根据磁谐振等效电路原理,设计出了工作在X波段的基于变异开口谐振环(split ring resonators)结构的新型双频带磁谐振特异材料.由于内外环间具有弱耦合的优越特性,所提出的磁谐振特异材料的两个工作频点可以较为方便地调节.该研究成果为特异材料的多频带、宽带化提供有益的的研究思路和设计方法.展开更多
The authors' theoretical investigation on the high-frequency response of magnetized metallic magnetic films showed that magnetic films may become left-handed materials (LHMs) near the ferromagnetic resonance freque...The authors' theoretical investigation on the high-frequency response of magnetized metallic magnetic films showed that magnetic films may become left-handed materials (LHMs) near the ferromagnetic resonance frequency of incident waves with right-handed circular polarization (RCP) and linear polarization (LP). The frequency range where LHM exists depends on the waves polarization, the magnetic damping coefficient, and the ferromagnetic characteristic frequency corn of the film. There also exists a critical damping coefficient ac, above which the left-handed properties disappear completely.展开更多
文摘根据磁谐振等效电路原理,设计出了工作在X波段的基于变异开口谐振环(split ring resonators)结构的新型双频带磁谐振特异材料.由于内外环间具有弱耦合的优越特性,所提出的磁谐振特异材料的两个工作频点可以较为方便地调节.该研究成果为特异材料的多频带、宽带化提供有益的的研究思路和设计方法.
基金Project supported by the National Basic Research Program (973) ofChina (No. 2004CB719805) and the National Natural Science Foun-dation of China (No. 60471020)
文摘The authors' theoretical investigation on the high-frequency response of magnetized metallic magnetic films showed that magnetic films may become left-handed materials (LHMs) near the ferromagnetic resonance frequency of incident waves with right-handed circular polarization (RCP) and linear polarization (LP). The frequency range where LHM exists depends on the waves polarization, the magnetic damping coefficient, and the ferromagnetic characteristic frequency corn of the film. There also exists a critical damping coefficient ac, above which the left-handed properties disappear completely.