The reverse magnetohydrodynamic(MHD)energy bypass technology is a promising energy redis⁃tribution technology in the scramjet system,in augmented with a power generation equipment to supply the neces⁃sary long-distanc...The reverse magnetohydrodynamic(MHD)energy bypass technology is a promising energy redis⁃tribution technology in the scramjet system,in augmented with a power generation equipment to supply the neces⁃sary long-distance flight airframe power.In this paper,a computational model of the scramjet magnetohydrody⁃namic channel is developed and verified by using the commercial software Fluent.It is found that when the mag⁃netic induction intensity is 1,2,3,4 T,the power generation efficiency is 22.5%,22.3%,22.0%,21.5%,and decreases with the increase of the magnetic induction intensity,and the enthalpy extraction rate is 0.026%,0.1%,0.21%,0.34%,and increases with the increase of the magnetic induction intensity.The deceleration ef⁃fect of electromagnetic action on the airflow in the power channel increases with the increase of magnetic induc⁃tion intensity.The stronger the magnetic field intensity,the more obvious the decreasing effect of fluid Mach num⁃ber in the channel.The power generation efficiency decreases as the magnetic induction intensity increases and the enthalpy extraction rate is reversed.As the local currents gathering at inlet and outlet of the power generation area,total temperature and enthalpy along the flow direction do not vary linearly,and there are maximum and minimum values at inlet and outlet.Increasing the number of electrodes can effectively regulate the percentage of Joule heat dissipation,which can improve the power generation efficiency.展开更多
The macroscopic fundamental diagram( MFD) is studied to obtain the aggregate behavior of traffic in cities. This paper investigates the existence and the characteristics of different types of daily MFD for the Shang...The macroscopic fundamental diagram( MFD) is studied to obtain the aggregate behavior of traffic in cities. This paper investigates the existence and the characteristics of different types of daily MFD for the Shanghai urban expressway network. The existence of MFD in the Shanghai urban expressway network is proved based on two weeks' data.Moreover, the hysteresis phenomena is present in most days and the network exhibits different hysteresis loops under different traffic situations. The relationship between the hysteresis phenomena and the inhomogeneity of traffic distribution is verified. The MFDs in the years of 2009 and 2012 are compared. The hysteresis loop still exists in 2012, which further verifies the existence of the hysteresis phenomenon. The direct relationship between the length of the hysteresis loop( ΔO) and the congestion is proved based on sufficient data. The width of the hysteresis loop, i. e., the drop in network flow( ΔQ) has no relationship with the congestion, and it varies from day to day under different traffic situations.展开更多
The process of cold seeding melt growth of GdBa2Cu3Oy (Gd123) bulk superconductors using NdBa2Cu3Oy (Nd123) thin films was reported. In addition, a novel cold seeding concept of combining MgO crystal and buffer pe...The process of cold seeding melt growth of GdBa2Cu3Oy (Gd123) bulk superconductors using NdBa2Cu3Oy (Nd123) thin films was reported. In addition, a novel cold seeding concept of combining MgO crystal and buffer pellet was also introduced. The misorientation caused by the lattice mismatch between MgO and Gd123 melt was overcome by choosing suitable heat treatment program and Gd2BaCuO5 (Gd211) content of the buffer pellet. The doping effect of soft ferromagnetic NiFe alloy particles was also reported. The bulk sample with 0.4% (mole fraction) doping amount shows the best performance on the flux trapping. The critical current density is largely enhanced under the external field of 1-2 T, which is promising for large-scale applications. This effect is originated from the substitution of Fe and Ni ions for the Cu sites contributing to magnetic flux pinning.展开更多
A discontinuity of magnetic circuits according to the end effect is generated in the permanent magnet linear synchronous motor (PMLSM). Due to the unbalanced back electro-motive force (EMF) and impedance produced,...A discontinuity of magnetic circuits according to the end effect is generated in the permanent magnet linear synchronous motor (PMLSM). Due to the unbalanced back electro-motive force (EMF) and impedance produced, unbalanced current is generated. The cireulatin8 current, which is caused by a decrease in the thrust, is generated by the unbalanced current. The optimal design of auxiliary-teeth at the end of the mover was carried out to solve the unbalance of phase by using design of experiment (DOE), and compared with the basic model through finite element analysis (FEA). As a result, the auxiliary-teeth model compensates for the decrease of thrust caused by the unbalanced phase. Also, this model is proven to reduce the detent force by the vibration and noise of the PMLSM and copper loss caused by the circulating current.展开更多
The pinning characteristics of a single crystal NdBaaCu3Oy superconductor at low (40 K), intermediate (77.3 K) and high (88 K) temperatures were investigated. The experimental results of the critical current den...The pinning characteristics of a single crystal NdBaaCu3Oy superconductor at low (40 K), intermediate (77.3 K) and high (88 K) temperatures were investigated. The experimental results of the critical current density dc and the apparent pinning potential u o which estimated from magnetic relaxation measurements are compared with the theoretical analysis based on the flux creep-flow model, taking the distribution of the flux pinning strength into account. The number of flux lines in the flux bundle (g2), the most probable value of pinning strength (Am), distribution width of pinning strength (σ-2) and other pinning parameters such as m, γ,δ are determined so that a good fit is obtained between the experimental and theoretical results. The behavior of these parameters is discussed in correspondence to the pinning characteristics of low, intermediate and high temperatures. The observed results are approximately consistent with the theoretical predictions of Brandt et al. model of the order-disorder transition.展开更多
Rotor time constant is an important parameter for the indirect lleld oraentateO control of mauc- tion motor. Incorrect rotor tittle constant value will cause the flux observer generating a wrong angu- lar orientation ...Rotor time constant is an important parameter for the indirect lleld oraentateO control of mauc- tion motor. Incorrect rotor tittle constant value will cause the flux observer generating a wrong angu- lar orientation of the rotor field. A new approach serves for rotor time constant on-line adaptation by setting the stator current to be zero for a short period. A smooth eorrector is designed to prevent ab- normal detection result from making adaptation. Impact of zero current duration on detection error and rotor speed is analyzed by experiments.展开更多
In this paper,firstly,by solving the Riemann problem of the zero-pressure flow in gas dynamics with a flux approximation,we construct parameterized delta-shock and constant density solutions,then we show that,as the f...In this paper,firstly,by solving the Riemann problem of the zero-pressure flow in gas dynamics with a flux approximation,we construct parameterized delta-shock and constant density solutions,then we show that,as the flux perturbation vanishes,they converge to the delta-shock and vacuum state solutions of the zero-pressure flow,respectively.Secondly,we solve the Riemann problem of the Euler equations of isentropic gas dynamics with a double parameter flux approximation including pressure.Furthermore,we rigorously prove that,as the two-parameter flux perturbation vanishes,any Riemann solution containing two shock waves tends to a delta-shock solution to the zero-pressure flow;any Riemann solution containing two rarefaction waves tends to a two-contact-discontinuity solution to the zero-pressure flow and the nonvacuum intermediate state in between tends to a vacuum state.Finally,numerical results are given to present the formation processes of delta shock waves and vacuum states.展开更多
A new method for determining the central axial orientation of a two-dimensional coherent magnetic flux rope(MFR)via multipoint analysis of the magnetic-field structure is developed. The method is devised under the fol...A new method for determining the central axial orientation of a two-dimensional coherent magnetic flux rope(MFR)via multipoint analysis of the magnetic-field structure is developed. The method is devised under the following geometrical assumptions:(1) on its cross section, the structure is left-right symmetric;(2) the projected structure velocity is vertical to the line of symmetry. The two conditions can be naturally satisfied for cylindrical MFRs and are expected to be satisfied for MFRs that are flattened within current sheets. The model test demonstrates that, for determining the axial orientation of such structures, the new method is more efficient and reliable than traditional techniques such as minimum-variance analysis of the magnetic field,Grad-Shafranov(GS) reconstruction, and the more recent method based on the cylindrically symmetric assumption. A total of five flux transfer events observed by Cluster are studied using the proposed approach, and the application results indicate that the observed structures, regardless of their actual physical properties, fit the assumed geometrical model well. For these events, the inferred axial orientations are all in excellent agreement with those obtained using the multi-GS reconstruction technique.展开更多
Accurate calculation of circulating current is one of the key problems for stator transposition bars in the design of turbo-generators. Aimed at limitation that analytical algorithm of circulating current could not re...Accurate calculation of circulating current is one of the key problems for stator transposition bars in the design of turbo-generators. Aimed at limitation that analytical algorithm of circulating current could not reflect the local electromagnetic field distribution and difficulty that overlaps easily exist in solid modeling process of stator transposition bars, a simplified physical model of transposition bars is established. A three-dimensional(3-D) numerical method for circulating current in stator transposition bars of large water-cooled turbo-generators is investigated, which is combined with field-circuit coupling method. Taking stator bars less than 540° transposition with void model of a 600-MW water-cooled turbo-generator as the research object, the magnetic flux density distribution, current density distribution and circulating current distribution of transposition strands are obtained by numerical calculation. Compared with calculation results of the improved analytical algorithm, the correctness of the numerical calculation for circulating current is demonstrated, the calculation value difference for the maximum current of strands is obtained. The numerical calculation for circulating current will provide an appropriate basis for the reasonable calculation of local overheating of stator transposition bars and the design of safety margin for turbo-generators.展开更多
In this paper, a smooth repetitive osciflating wave traveling down the elastic walls of a non-uniform two- dimensional channels is considered. It is assumed that the fluid is electrically conducting and a uniform magn...In this paper, a smooth repetitive osciflating wave traveling down the elastic walls of a non-uniform two- dimensional channels is considered. It is assumed that the fluid is electrically conducting and a uniform magnetic field is perpendicular to flow. The Sisko fluid is grease thick non-Newtonian fluid can be considered equivalent to blood. Taking long wavelength and low Reynolds number, the equations are reduced. The analytical solution of the emerging non-linear differential equation is obtained by employing Homotopy Perturbation Method (HPM). The outcomes for dimensionless flow rate and dimensionless pressure rise have been computed numerically with respect to sundry concerning parameters amplitude ratio , Hartmann number M, and Sisko fluid parameter bl. The behaviors for pressure rise and average friction have been discussed in details and displayed graphically. Numerical and graphical comparison of Newtonian and non-Newtonian has also been evaluated for velocity and pressure rise. It is observed that the magnitude of pressure rise is maximum in the middle of the channel whereas for higher values of fluid parameter it increases. Further, it is also found that the velocity profile shows converse behavior along the walls of the channel against multiple values of fluid parameter.展开更多
Comprehensive records are available in ENA data of ring current activity recorded by the NUADU instrument aboard TC-2 on 15 May, 2005 during a major magnetic storm (which incorporated a series of substorms). Ion flu...Comprehensive records are available in ENA data of ring current activity recorded by the NUADU instrument aboard TC-2 on 15 May, 2005 during a major magnetic storm (which incorporated a series of substorms). Ion fluxes at 4-min temporal resolution derived from ENA data in the energy ranges 50-81 and 81-158 keV are compared with in situ particle fluxes measured by the LANL-SOPA instruments aboard LANL-01, LANL-02, LANL-97, and LANL-84 (a series of geostationary satellites that encircle the equatorial plane at -6.6 RE). Also, magnetic fields measured simultaneously by the magetometers aboard GOES-10 and GOES-12 (which are also geostationary satellites) are compared with the particle data. It is demonstrated that ion fluxes in the ring current were enhanced during geomagnetic field tailward stretching in the growth phases of substorms rather than after Earthward directed dipolarization events. This observation, which challenges the existing concept that ring current particles are injected Earthward from the magnetotail following dipolarization events, requires further investigation using a large number of magnetic storm events.展开更多
The study of heat transfer is of significant importance in many biological and biomedical industry problems.This investigation comprises of the study of entropy generation analysis of the blood flow in the arteries wi...The study of heat transfer is of significant importance in many biological and biomedical industry problems.This investigation comprises of the study of entropy generation analysis of the blood flow in the arteries with permeable walls. The convection through the flow is studied with compliments to the entropy generation. Governing problem is formulized and solved for low Reynold's number and long wavelength approximations. Exact analytical solutions have been obtained and are analyzed graphically. It is seen that temperature for pure water is lower as compared to the copper water. It gains magnitude with an increase in the slip parameter.展开更多
Peristaltic flow of magnetohydrodynamic (MHD) Williamson fluid in a symmetric chan- nel is addressed. Modeling is given with Sorer and Dufour effects. Channel walls have compliant properties. Analysis has been carri...Peristaltic flow of magnetohydrodynamic (MHD) Williamson fluid in a symmetric chan- nel is addressed. Modeling is given with Sorer and Dufour effects. Channel walls have compliant properties. Analysis has been carried out through long wavelength and low Reynolds number approach. The obtained series solutions for small Weissenberg number are developed. Impact of variables reflecting the salient features of wall properties, Blot numbers and Soret and Dufour on the velocity, temperature and concentration has been point out. Trapping phenomenon is also analyzed.展开更多
This Communication deals with the blood flow of Prandtl fluid through a tapered stenosed arteries having permeable walls.The governing equations of two-dimensional Prandtl fluid model are modelled in cylindrical coord...This Communication deals with the blood flow of Prandtl fluid through a tapered stenosed arteries having permeable walls.The governing equations of two-dimensional Prandtl fluid model are modelled in cylindrical coordinates.The highly nonlinear equations are simplified with the help of non-dimensional variables under the assumption of mild stenosis.The solution of reduced nonlinear equation subject to boundary condition of porous walls having the effects of Darcy's number and slip parameter are computed analytically with the help of perturbation method.Effects of emerging parameters such as impedance A,slip parameter a,stenosis height 6,magnetic parameter and stress component Srz on velocity are illustrated graphically.The streamlines have also been presented to discuss the trapping bolus discipline.展开更多
文摘The reverse magnetohydrodynamic(MHD)energy bypass technology is a promising energy redis⁃tribution technology in the scramjet system,in augmented with a power generation equipment to supply the neces⁃sary long-distance flight airframe power.In this paper,a computational model of the scramjet magnetohydrody⁃namic channel is developed and verified by using the commercial software Fluent.It is found that when the mag⁃netic induction intensity is 1,2,3,4 T,the power generation efficiency is 22.5%,22.3%,22.0%,21.5%,and decreases with the increase of the magnetic induction intensity,and the enthalpy extraction rate is 0.026%,0.1%,0.21%,0.34%,and increases with the increase of the magnetic induction intensity.The deceleration ef⁃fect of electromagnetic action on the airflow in the power channel increases with the increase of magnetic induc⁃tion intensity.The stronger the magnetic field intensity,the more obvious the decreasing effect of fluid Mach num⁃ber in the channel.The power generation efficiency decreases as the magnetic induction intensity increases and the enthalpy extraction rate is reversed.As the local currents gathering at inlet and outlet of the power generation area,total temperature and enthalpy along the flow direction do not vary linearly,and there are maximum and minimum values at inlet and outlet.Increasing the number of electrodes can effectively regulate the percentage of Joule heat dissipation,which can improve the power generation efficiency.
基金The National Natural Science Foundation of China(No.51238008)
文摘The macroscopic fundamental diagram( MFD) is studied to obtain the aggregate behavior of traffic in cities. This paper investigates the existence and the characteristics of different types of daily MFD for the Shanghai urban expressway network. The existence of MFD in the Shanghai urban expressway network is proved based on two weeks' data.Moreover, the hysteresis phenomena is present in most days and the network exhibits different hysteresis loops under different traffic situations. The relationship between the hysteresis phenomena and the inhomogeneity of traffic distribution is verified. The MFDs in the years of 2009 and 2012 are compared. The hysteresis loop still exists in 2012, which further verifies the existence of the hysteresis phenomenon. The direct relationship between the length of the hysteresis loop( ΔO) and the congestion is proved based on sufficient data. The width of the hysteresis loop, i. e., the drop in network flow( ΔQ) has no relationship with the congestion, and it varies from day to day under different traffic situations.
文摘The process of cold seeding melt growth of GdBa2Cu3Oy (Gd123) bulk superconductors using NdBa2Cu3Oy (Nd123) thin films was reported. In addition, a novel cold seeding concept of combining MgO crystal and buffer pellet was also introduced. The misorientation caused by the lattice mismatch between MgO and Gd123 melt was overcome by choosing suitable heat treatment program and Gd2BaCuO5 (Gd211) content of the buffer pellet. The doping effect of soft ferromagnetic NiFe alloy particles was also reported. The bulk sample with 0.4% (mole fraction) doping amount shows the best performance on the flux trapping. The critical current density is largely enhanced under the external field of 1-2 T, which is promising for large-scale applications. This effect is originated from the substitution of Fe and Ni ions for the Cu sites contributing to magnetic flux pinning.
基金supported by the Second Stage of Brain Korea 21 Projects and Changwon National University in 2009-2010
文摘A discontinuity of magnetic circuits according to the end effect is generated in the permanent magnet linear synchronous motor (PMLSM). Due to the unbalanced back electro-motive force (EMF) and impedance produced, unbalanced current is generated. The cireulatin8 current, which is caused by a decrease in the thrust, is generated by the unbalanced current. The optimal design of auxiliary-teeth at the end of the mover was carried out to solve the unbalance of phase by using design of experiment (DOE), and compared with the basic model through finite element analysis (FEA). As a result, the auxiliary-teeth model compensates for the decrease of thrust caused by the unbalanced phase. Also, this model is proven to reduce the detent force by the vibration and noise of the PMLSM and copper loss caused by the circulating current.
文摘The pinning characteristics of a single crystal NdBaaCu3Oy superconductor at low (40 K), intermediate (77.3 K) and high (88 K) temperatures were investigated. The experimental results of the critical current density dc and the apparent pinning potential u o which estimated from magnetic relaxation measurements are compared with the theoretical analysis based on the flux creep-flow model, taking the distribution of the flux pinning strength into account. The number of flux lines in the flux bundle (g2), the most probable value of pinning strength (Am), distribution width of pinning strength (σ-2) and other pinning parameters such as m, γ,δ are determined so that a good fit is obtained between the experimental and theoretical results. The behavior of these parameters is discussed in correspondence to the pinning characteristics of low, intermediate and high temperatures. The observed results are approximately consistent with the theoretical predictions of Brandt et al. model of the order-disorder transition.
基金Supported by the National Natural Science Foundation of China(No.51276016)the Fundamental Research Funds for the Central University(No.FRF-TP-12-059A)
文摘Rotor time constant is an important parameter for the indirect lleld oraentateO control of mauc- tion motor. Incorrect rotor tittle constant value will cause the flux observer generating a wrong angu- lar orientation of the rotor field. A new approach serves for rotor time constant on-line adaptation by setting the stator current to be zero for a short period. A smooth eorrector is designed to prevent ab- normal detection result from making adaptation. Impact of zero current duration on detection error and rotor speed is analyzed by experiments.
基金supported by National Natural Science Foundation of China(Grant No.11361073)
文摘In this paper,firstly,by solving the Riemann problem of the zero-pressure flow in gas dynamics with a flux approximation,we construct parameterized delta-shock and constant density solutions,then we show that,as the flux perturbation vanishes,they converge to the delta-shock and vacuum state solutions of the zero-pressure flow,respectively.Secondly,we solve the Riemann problem of the Euler equations of isentropic gas dynamics with a double parameter flux approximation including pressure.Furthermore,we rigorously prove that,as the two-parameter flux perturbation vanishes,any Riemann solution containing two shock waves tends to a delta-shock solution to the zero-pressure flow;any Riemann solution containing two rarefaction waves tends to a two-contact-discontinuity solution to the zero-pressure flow and the nonvacuum intermediate state in between tends to a vacuum state.Finally,numerical results are given to present the formation processes of delta shock waves and vacuum states.
基金supported by the National Natural Science Foundation of China (Grant Nos. 40774081, 41231066)Ministry of Science and Technology of China (Grant No. 2011CB811404)the Specialized Research Fund for State Key Laboratories
文摘A new method for determining the central axial orientation of a two-dimensional coherent magnetic flux rope(MFR)via multipoint analysis of the magnetic-field structure is developed. The method is devised under the following geometrical assumptions:(1) on its cross section, the structure is left-right symmetric;(2) the projected structure velocity is vertical to the line of symmetry. The two conditions can be naturally satisfied for cylindrical MFRs and are expected to be satisfied for MFRs that are flattened within current sheets. The model test demonstrates that, for determining the axial orientation of such structures, the new method is more efficient and reliable than traditional techniques such as minimum-variance analysis of the magnetic field,Grad-Shafranov(GS) reconstruction, and the more recent method based on the cylindrically symmetric assumption. A total of five flux transfer events observed by Cluster are studied using the proposed approach, and the application results indicate that the observed structures, regardless of their actual physical properties, fit the assumed geometrical model well. For these events, the inferred axial orientations are all in excellent agreement with those obtained using the multi-GS reconstruction technique.
基金supported by the National Natural Science Foundation of China(Grant No.51477038)
文摘Accurate calculation of circulating current is one of the key problems for stator transposition bars in the design of turbo-generators. Aimed at limitation that analytical algorithm of circulating current could not reflect the local electromagnetic field distribution and difficulty that overlaps easily exist in solid modeling process of stator transposition bars, a simplified physical model of transposition bars is established. A three-dimensional(3-D) numerical method for circulating current in stator transposition bars of large water-cooled turbo-generators is investigated, which is combined with field-circuit coupling method. Taking stator bars less than 540° transposition with void model of a 600-MW water-cooled turbo-generator as the research object, the magnetic flux density distribution, current density distribution and circulating current distribution of transposition strands are obtained by numerical calculation. Compared with calculation results of the improved analytical algorithm, the correctness of the numerical calculation for circulating current is demonstrated, the calculation value difference for the maximum current of strands is obtained. The numerical calculation for circulating current will provide an appropriate basis for the reasonable calculation of local overheating of stator transposition bars and the design of safety margin for turbo-generators.
文摘In this paper, a smooth repetitive osciflating wave traveling down the elastic walls of a non-uniform two- dimensional channels is considered. It is assumed that the fluid is electrically conducting and a uniform magnetic field is perpendicular to flow. The Sisko fluid is grease thick non-Newtonian fluid can be considered equivalent to blood. Taking long wavelength and low Reynolds number, the equations are reduced. The analytical solution of the emerging non-linear differential equation is obtained by employing Homotopy Perturbation Method (HPM). The outcomes for dimensionless flow rate and dimensionless pressure rise have been computed numerically with respect to sundry concerning parameters amplitude ratio , Hartmann number M, and Sisko fluid parameter bl. The behaviors for pressure rise and average friction have been discussed in details and displayed graphically. Numerical and graphical comparison of Newtonian and non-Newtonian has also been evaluated for velocity and pressure rise. It is observed that the magnitude of pressure rise is maximum in the middle of the channel whereas for higher values of fluid parameter it increases. Further, it is also found that the velocity profile shows converse behavior along the walls of the channel against multiple values of fluid parameter.
基金the National Natural Science Foundation of China(Grant Nos.41431071,41574152)the National Basic Research Program of China(Grant No.2011CB811404)the Strategic Priority Research Program on Space Science,the Chinese Academy of Sciences(Grant No.XDA04060201)
文摘Comprehensive records are available in ENA data of ring current activity recorded by the NUADU instrument aboard TC-2 on 15 May, 2005 during a major magnetic storm (which incorporated a series of substorms). Ion fluxes at 4-min temporal resolution derived from ENA data in the energy ranges 50-81 and 81-158 keV are compared with in situ particle fluxes measured by the LANL-SOPA instruments aboard LANL-01, LANL-02, LANL-97, and LANL-84 (a series of geostationary satellites that encircle the equatorial plane at -6.6 RE). Also, magnetic fields measured simultaneously by the magetometers aboard GOES-10 and GOES-12 (which are also geostationary satellites) are compared with the particle data. It is demonstrated that ion fluxes in the ring current were enhanced during geomagnetic field tailward stretching in the growth phases of substorms rather than after Earthward directed dipolarization events. This observation, which challenges the existing concept that ring current particles are injected Earthward from the magnetotail following dipolarization events, requires further investigation using a large number of magnetic storm events.
文摘The study of heat transfer is of significant importance in many biological and biomedical industry problems.This investigation comprises of the study of entropy generation analysis of the blood flow in the arteries with permeable walls. The convection through the flow is studied with compliments to the entropy generation. Governing problem is formulized and solved for low Reynold's number and long wavelength approximations. Exact analytical solutions have been obtained and are analyzed graphically. It is seen that temperature for pure water is lower as compared to the copper water. It gains magnitude with an increase in the slip parameter.
文摘Peristaltic flow of magnetohydrodynamic (MHD) Williamson fluid in a symmetric chan- nel is addressed. Modeling is given with Sorer and Dufour effects. Channel walls have compliant properties. Analysis has been carried out through long wavelength and low Reynolds number approach. The obtained series solutions for small Weissenberg number are developed. Impact of variables reflecting the salient features of wall properties, Blot numbers and Soret and Dufour on the velocity, temperature and concentration has been point out. Trapping phenomenon is also analyzed.
文摘This Communication deals with the blood flow of Prandtl fluid through a tapered stenosed arteries having permeable walls.The governing equations of two-dimensional Prandtl fluid model are modelled in cylindrical coordinates.The highly nonlinear equations are simplified with the help of non-dimensional variables under the assumption of mild stenosis.The solution of reduced nonlinear equation subject to boundary condition of porous walls having the effects of Darcy's number and slip parameter are computed analytically with the help of perturbation method.Effects of emerging parameters such as impedance A,slip parameter a,stenosis height 6,magnetic parameter and stress component Srz on velocity are illustrated graphically.The streamlines have also been presented to discuss the trapping bolus discipline.