Transient electromagnetic method(TEM)has been widely used in the field of medium and shallow underground detection due to its high detection efficiency and large detection depth.However,due to the long turn-off time o...Transient electromagnetic method(TEM)has been widely used in the field of medium and shallow underground detection due to its high detection efficiency and large detection depth.However,due to the long turn-off time of the transmitting current caused by the inductive characteristics of the transmitting coil,the early signals will be overwhelmed by primary field.Since the early signals contain most of shallow geological signals,it is necessary to reduce the long turn-off time to get shallow layer signal.Due to lack of a reliable and effective clamping method for high-power transmission at present,we design a TEM transmitter fast turn-off circuit,combining self-resonant zero-voltage switching technology with the corresponding timing control circuit to solve this problem effectively.A transient electromagnetic transmitter based on self-resonant constant voltage clamping technology was fabricated to charge the clamping capacitor.The rated transmitting current of the transmitter is 20 A,and the turn-off time is continuously adjustable from 550-50μs.Moreover,the current drop process is approximately linear rather than exponential attenuation.Compared with the existing clamping methods,the proposed clamping method solves the problems that transient voltage suppressor(TVS)clamping cannot be used in high-power occasions and has a high failure rate.It also solves the problem of long pre-charge time in traditional capacitor clamping methods due to insufficient inductance of the small size transmitting coil.The proposed method can provide a reference for fast shutdown of large current.展开更多
Acutely isolated mouse hippocampal CA3 pyramidal neurons were exposed to 3 mT static magnetic field,and the characteristics of transient outward K+ channel were studied using the whole-cell patch-clamp technique.The e...Acutely isolated mouse hippocampal CA3 pyramidal neurons were exposed to 3 mT static magnetic field,and the characteristics of transient outward K+ channel were studied using the whole-cell patch-clamp technique.The experiment revealed that the amplitude of transient outward potassium channel current was reduced.The maximum activated current densities of control group and exposure group were 163.62±20.68 pA/pF and 98.74±16.57 pA/pF(n=12,P<0.01) respectively.The static magnetic field exposure affected the activation and inactivation process of transient outward potassium channel current.Due to the magnetic field exposure,the half-activation voltage of the activation curves changed from 5.59±1.96 mV to 27.87±7.24 mV(n=12,P<0.05) ,and the slope factor changed from 19.43±2.11 mV to 25.87±4.22 mV(n=12,P<0.05) .The half-inactivation voltage of the inactivation curves also changed from-56.09±0.89 mV to-57.16±1.10 mV(n=12,P>0.05) and the slope factor of the inactivation curves from 8.69±0.80 mV to 10.87±1.02 mV(n=12,P<0.05) .The results show that the static magnetic field can change the characteristics of transient outward K+ channel,and affect the physiological functions of neurons.展开更多
文摘Transient electromagnetic method(TEM)has been widely used in the field of medium and shallow underground detection due to its high detection efficiency and large detection depth.However,due to the long turn-off time of the transmitting current caused by the inductive characteristics of the transmitting coil,the early signals will be overwhelmed by primary field.Since the early signals contain most of shallow geological signals,it is necessary to reduce the long turn-off time to get shallow layer signal.Due to lack of a reliable and effective clamping method for high-power transmission at present,we design a TEM transmitter fast turn-off circuit,combining self-resonant zero-voltage switching technology with the corresponding timing control circuit to solve this problem effectively.A transient electromagnetic transmitter based on self-resonant constant voltage clamping technology was fabricated to charge the clamping capacitor.The rated transmitting current of the transmitter is 20 A,and the turn-off time is continuously adjustable from 550-50μs.Moreover,the current drop process is approximately linear rather than exponential attenuation.Compared with the existing clamping methods,the proposed clamping method solves the problems that transient voltage suppressor(TVS)clamping cannot be used in high-power occasions and has a high failure rate.It also solves the problem of long pre-charge time in traditional capacitor clamping methods due to insufficient inductance of the small size transmitting coil.The proposed method can provide a reference for fast shutdown of large current.
基金Supported by National Natural Science Foundation of China(No. 60674111)
文摘Acutely isolated mouse hippocampal CA3 pyramidal neurons were exposed to 3 mT static magnetic field,and the characteristics of transient outward K+ channel were studied using the whole-cell patch-clamp technique.The experiment revealed that the amplitude of transient outward potassium channel current was reduced.The maximum activated current densities of control group and exposure group were 163.62±20.68 pA/pF and 98.74±16.57 pA/pF(n=12,P<0.01) respectively.The static magnetic field exposure affected the activation and inactivation process of transient outward potassium channel current.Due to the magnetic field exposure,the half-activation voltage of the activation curves changed from 5.59±1.96 mV to 27.87±7.24 mV(n=12,P<0.05) ,and the slope factor changed from 19.43±2.11 mV to 25.87±4.22 mV(n=12,P<0.05) .The half-inactivation voltage of the inactivation curves also changed from-56.09±0.89 mV to-57.16±1.10 mV(n=12,P>0.05) and the slope factor of the inactivation curves from 8.69±0.80 mV to 10.87±1.02 mV(n=12,P<0.05) .The results show that the static magnetic field can change the characteristics of transient outward K+ channel,and affect the physiological functions of neurons.