Milling Ti alloy is a very difficult technology. The primary problem is that the miller wear is very rapid and makes the miller break or rapture. Although cutting fluid is mainly used to reduce friction and temperatur...Milling Ti alloy is a very difficult technology. The primary problem is that the miller wear is very rapid and makes the miller break or rapture. Although cutting fluid is mainly used to reduce friction and temperature in cutting area to enhance tool life, it is the largest source of environmental pollution. To develop a technology for the clean and efficient milling Ti alloys, nitrogen gas is used as a cutting media in this paper. Based on lots of experiments and researches, the tool life and wear mechanism of high speed steel miller is analyzed. A conclusion is drawn that, milling with nitrogen gas media yields much longer tool life than dry milling. Tool life equations (Taylor′s equations) are derived for both milling types.展开更多
The strengthening effect of fullerenes in aluminum matrix composites was investigated. The composites are produced using a two-step ball-milling technique combined with a hot rolling process. First, fullerene aggregat...The strengthening effect of fullerenes in aluminum matrix composites was investigated. The composites are produced using a two-step ball-milling technique combined with a hot rolling process. First, fullerene aggregates, where fullerene molecules initially come together to form giant particles(~200 μm in diameter) via van der Waals bonding, are shattered into smaller particles(~1 μm in diameter) by planetary milling. Second, primarily ball-milled fullerenes are dispersed in aluminum powder via attrition milling. Finally, aluminum/fullerene composite powder is consolidated by hot-rolling at 480 °C. For the composite sheet, grain refinement strengthening and dispersion hardening by fullerenes are accomplished at the same time, thereby exhibiting HV ~222 of Vickers hardness(e.g., ~740 MPa of yield strength) with only 2%(volume fraction) of fullerenes.展开更多
文摘Milling Ti alloy is a very difficult technology. The primary problem is that the miller wear is very rapid and makes the miller break or rapture. Although cutting fluid is mainly used to reduce friction and temperature in cutting area to enhance tool life, it is the largest source of environmental pollution. To develop a technology for the clean and efficient milling Ti alloys, nitrogen gas is used as a cutting media in this paper. Based on lots of experiments and researches, the tool life and wear mechanism of high speed steel miller is analyzed. A conclusion is drawn that, milling with nitrogen gas media yields much longer tool life than dry milling. Tool life equations (Taylor′s equations) are derived for both milling types.
基金supported in part by the New Faculty Research Program 2012 of Kookmin University in Koreathe support from the Priority Research Centers Program (2012-0006680)the Korea-Belarus Joint Research Program (2012-057348) through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology
文摘The strengthening effect of fullerenes in aluminum matrix composites was investigated. The composites are produced using a two-step ball-milling technique combined with a hot rolling process. First, fullerene aggregates, where fullerene molecules initially come together to form giant particles(~200 μm in diameter) via van der Waals bonding, are shattered into smaller particles(~1 μm in diameter) by planetary milling. Second, primarily ball-milled fullerenes are dispersed in aluminum powder via attrition milling. Finally, aluminum/fullerene composite powder is consolidated by hot-rolling at 480 °C. For the composite sheet, grain refinement strengthening and dispersion hardening by fullerenes are accomplished at the same time, thereby exhibiting HV ~222 of Vickers hardness(e.g., ~740 MPa of yield strength) with only 2%(volume fraction) of fullerenes.