In the fault prediction of mechanical equipments through spectromectric oil analysis for worn off debris, a method for the determination of the limiting value of wear is proposed and discussed. In order to diagnose th...In the fault prediction of mechanical equipments through spectromectric oil analysis for worn off debris, a method for the determination of the limiting value of wear is proposed and discussed. In order to diagnose the impending failure and to predict the fault modes and locate the fault spots, a comprehensive approach is studied and outlined on the basis of methods of discriminative analysis and fuzzy logic. A fault diagnosis expert system OAFDS developed by the authors for the nonitoring of working conditions of the ND5 locomotive diesel engine Nd5 is briefly introduced.展开更多
Remote monitoring of tools for prediction of tool wear in cutting processes was considered, and a method of implementation of a remote-monitoring system previously developed was proposed. Sensor signals were received ...Remote monitoring of tools for prediction of tool wear in cutting processes was considered, and a method of implementation of a remote-monitoring system previously developed was proposed. Sensor signals were received and tool wear was predicted in the local system using an ART2 algorithm, while the monitoring result was transferred to the remote system via intemet. The monitoring system was installed at an on-site machine tool for monitoring three kinds of tools cutting titanium alloys, and the tool wear was evaluated on the basis of vigilances, similarities between vibration signals received and the normal patterns previously trained. A number of experiments were carried out to evaluate the performance of the proposed system, and the results show that the wears of finishing-cut tools are successfully detected when the moving average vigilance becomes lower than the critical vigilance, thus the appropriate tool replacement time is notified before the breakage.展开更多
Wheel/rail relationship is a fundamental problem of railway system. Wear of wheel profiles has great effect on vehicle performance. Thus, it is important not just for the analysis of wear characteristics but for its p...Wheel/rail relationship is a fundamental problem of railway system. Wear of wheel profiles has great effect on vehicle performance. Thus, it is important not just for the analysis of wear characteristics but for its prediction. Actual wheel profiles of the high-speed trains on service were measured in the high-speed line and the wear characteristics were analyzed which came to the following results. The wear location was centralized from-15 mm to 25 mm. The maximum wear value appeared at the area of 5 mm from tread center far from wheel flange and it was less than 1.5 mm. Then, wheel wear was fitted to get the polynomial functions on different locations and operation mileages. A binary numerical prediction model was raised to predict wheel wear. The prediction model was proved by vehicle system dynamics and wheel/rail contact geometry. The results show that the prediction model can reflect wear characteristics of measured profiles and vehicle performances.展开更多
Nanoparticles are increasingly being used to improve the friction and wear performance of polymers. In this study, we investigated the tribological behavior and energy dissipation characteristics of nano-Al_2O_3-reinf...Nanoparticles are increasingly being used to improve the friction and wear performance of polymers. In this study, we investigated the tribological behavior and energy dissipation characteristics of nano-Al_2O_3-reinforced polytetrafluoroethylenepolyphenylene sulfide(PTFE-PPS) composites in a sliding system. The tribological behaviors of the composites were evaluated under different normal loads(100–300 N) at a high linear velocity(2 m/s) using a block-on-ring tester. Addition of the nano-Al_2O_3 filler improved the antiwear performance of the PTFE-PPS composites, and the friction coefficient increased slightly. The lowest wear rate was obtained when the nano-Al_2O_3 content was 3%(volume fraction). Further, the results indicated a linear correlation between wear and the amount of energy dissipated, even though the wear mechanism changed with the nano-Al_2O_3 content, independent of the normal load applied.展开更多
文摘In the fault prediction of mechanical equipments through spectromectric oil analysis for worn off debris, a method for the determination of the limiting value of wear is proposed and discussed. In order to diagnose the impending failure and to predict the fault modes and locate the fault spots, a comprehensive approach is studied and outlined on the basis of methods of discriminative analysis and fuzzy logic. A fault diagnosis expert system OAFDS developed by the authors for the nonitoring of working conditions of the ND5 locomotive diesel engine Nd5 is briefly introduced.
基金supported by Changwon National University in 2009-2010
文摘Remote monitoring of tools for prediction of tool wear in cutting processes was considered, and a method of implementation of a remote-monitoring system previously developed was proposed. Sensor signals were received and tool wear was predicted in the local system using an ART2 algorithm, while the monitoring result was transferred to the remote system via intemet. The monitoring system was installed at an on-site machine tool for monitoring three kinds of tools cutting titanium alloys, and the tool wear was evaluated on the basis of vigilances, similarities between vibration signals received and the normal patterns previously trained. A number of experiments were carried out to evaluate the performance of the proposed system, and the results show that the wears of finishing-cut tools are successfully detected when the moving average vigilance becomes lower than the critical vigilance, thus the appropriate tool replacement time is notified before the breakage.
基金Project(U1234208)supported by the Major Program of the National Natural Science Foundation of ChinaProject(2013J008-A)supported by the Research and Development Plan of Major Tasks in Science and Technology China Railways Co.Ltd.,China
文摘Wheel/rail relationship is a fundamental problem of railway system. Wear of wheel profiles has great effect on vehicle performance. Thus, it is important not just for the analysis of wear characteristics but for its prediction. Actual wheel profiles of the high-speed trains on service were measured in the high-speed line and the wear characteristics were analyzed which came to the following results. The wear location was centralized from-15 mm to 25 mm. The maximum wear value appeared at the area of 5 mm from tread center far from wheel flange and it was less than 1.5 mm. Then, wheel wear was fitted to get the polynomial functions on different locations and operation mileages. A binary numerical prediction model was raised to predict wheel wear. The prediction model was proved by vehicle system dynamics and wheel/rail contact geometry. The results show that the prediction model can reflect wear characteristics of measured profiles and vehicle performances.
基金Project(51165022)supported by the National Natural Science Foundation of ChinaProject(20122117)supported by the Lanzhou Science and Technology Bureau Foundation,ChinaProject(1310RJZA036)supported by the Natural Science Foundation of Gansu Province,China
文摘Nanoparticles are increasingly being used to improve the friction and wear performance of polymers. In this study, we investigated the tribological behavior and energy dissipation characteristics of nano-Al_2O_3-reinforced polytetrafluoroethylenepolyphenylene sulfide(PTFE-PPS) composites in a sliding system. The tribological behaviors of the composites were evaluated under different normal loads(100–300 N) at a high linear velocity(2 m/s) using a block-on-ring tester. Addition of the nano-Al_2O_3 filler improved the antiwear performance of the PTFE-PPS composites, and the friction coefficient increased slightly. The lowest wear rate was obtained when the nano-Al_2O_3 content was 3%(volume fraction). Further, the results indicated a linear correlation between wear and the amount of energy dissipated, even though the wear mechanism changed with the nano-Al_2O_3 content, independent of the normal load applied.