In order to study the effect of element Nb on the microstructure and properties of the biomedical β-type Ti-Mo based alloys,Ti-15Mo-xNb(x=5,10,15 and 20 in %) alloys were investigated.The dry wear resistance of β-...In order to study the effect of element Nb on the microstructure and properties of the biomedical β-type Ti-Mo based alloys,Ti-15Mo-xNb(x=5,10,15 and 20 in %) alloys were investigated.The dry wear resistance of β-type Ti-15Mo-xNb alloys against Gr15 ball was investigated on CJS111A ball-disk wear instrument.Experimental results indicate that crystal structure and morphology of the Ti-15Mo-xNb alloys are sensitive to their Nb contents.Ti-15Mo-xNb alloys match those for β phase peaks and no any phases are found.The Vickers hardness values of all the Ti-15Mo-xNb alloys are higher than HV200.The compression yield strength of the Ti-15Mo-5Nb alloy is the lowest and that of the Ti-15Mo-10Nb alloy is the highest.For all the Ti-15Mo-xNb alloys,the friction coefficient is not constant but takes a higher value.In dry condition,SEM study reveals deep parallel scars on the wear surfaces of all the Ti-15Mo-xNb alloys under different loads.The friction coefficient of the Ti-15Mo-5Nb alloy under 1 N is the lowest.The wear principal mechanism for Ti-15Mo-xNb alloys is adhesive wear.展开更多
TiC particle reinforced 420 stainless steel matrix composites were fabricated, and the microstructure, tensile properties and wear resistance of the composites were studied. The experimental results indicate that the ...TiC particle reinforced 420 stainless steel matrix composites were fabricated, and the microstructure, tensile properties and wear resistance of the composites were studied. The experimental results indicate that the distribution of TiC particles with size of 5 to 10 μm in diameter is uniform if the volume fraction of TiC is lower than 6%. However, slight agglomeration can be observed when the TiC content exceeds 6%. With the increase of TiC content the tensile and yield strength of the composites prepared increases and reaches the maximum when the volume fraction of TiC increases to 5%. Further increase of TiC content causes reductions of yield and tensile strength. The ductility of the composites shows a monotone decrease with the increase of TiC addition. The introduction of TiC into 420 stainless steel results in significant improvement on wear resistance, which reaches a steady level when the volume fraction of TiC increases to 11% and does not show obvious variation if the TiC content is further increased.展开更多
Mg-xSi (x=0, 1.5, 3.3) alloys were fabricated and subjected to cyclic closed-die forging (CCDF), a new severe plastic deformation process, at 450 ℃ for 1, 3, and 5 passes. With applying CCDF, tensile strength, el...Mg-xSi (x=0, 1.5, 3.3) alloys were fabricated and subjected to cyclic closed-die forging (CCDF), a new severe plastic deformation process, at 450 ℃ for 1, 3, and 5 passes. With applying CCDF, tensile strength, elongation and hardness increase, while coarse Mg2Si particles break into smaller pieces and exhibit more uniform distribution. Mg-1.5%Si alloy exhibits a combination of improved strength and elongation after 5 passes of CCDF processing. The tensile strength is about 142 MPa and elongation is about 8%. The improvement in mechanical properties was further characterized by dry sliding wear testing. The results show that wear resistance improves with silicon content and CCDF process passes, particularly the first pass. The wear resistance increases by about 38% for Mg-3.3%Si after 5 passes of CCDF compared with pure Mg. The improvement of wear is related to microstructure refinement and homogenization based on the Archard equation and friction effect.展开更多
Underwater friction stir processing was performed on commercially pure copper with a purity of 99.8% and a copper-zinc alloy(brass). The tool was made of tungsten carbide in the threaded cone form. Friction stir proce...Underwater friction stir processing was performed on commercially pure copper with a purity of 99.8% and a copper-zinc alloy(brass). The tool was made of tungsten carbide in the threaded cone form. Friction stir processing was performed at a tool rotational speed of 1800 r/min and a tool transverse speed of 4 mm/min while the samples were immersed in a water tank with a water circulation system. In order to evaluate the effect of the number of process passes on the microstructure and mechanical properties of the samples, this process was continued for up to 6 passes. Microscopic studies using light microscopy on commercially pure copper samples show significant decrease in grain size. Likewise, the hardness of the cross-sectional area shows an increase more than the base metal. The X-ray diffraction pattern of the underwater friction stir processed samples in comparison to that of the base metal exhibits shorter and wider peaks, while the background of the pattern is increased. The sum of these factors represents the formation of an amorphous/ultrafine grained structure. Also, the wear behavior of the samples was investigated by means of pin-on-disk method and the results show that the friction coefficient of processed samples is decreased compared to that of the base metal. The results of wear and hardness tests show that the underwater friction stir processing can significantly improve the wear resistance and hardness of commercially pure copper and brass.展开更多
Two kinds of Ag-graphite composites reinforced with spherical graphite(SG)and conventional flake graphite(FG)were prepared by powder metallurgy technology.The effect of graphite morphology on the tribological behavior...Two kinds of Ag-graphite composites reinforced with spherical graphite(SG)and conventional flake graphite(FG)were prepared by powder metallurgy technology.The effect of graphite morphology on the tribological behavior for the Ag-SG and Ag-FG under the dry sliding wear was investigated with a pin-on-disk tribometer at a load of 3.0 N in atmosphere condition.The results indicated that the minimum wear rate of 3.5×10^-5 mm^3/(N·m)for Ag-FG was achieved and it reduced by nearly an order of magnitude,reaching 1.6×10^-6 mm^3/(N·m)for the Ag-SG.The obviously different tribological behaviors between the Ag-SG and Ag-FG were closely related to the formation of cracks in the sub-surface.The stress concentration tended to generate at the edges of flake graphite during sliding process,which resulted in the cracks and severe delamination wear of Ag-FG.However,no cracks were found around the spherical graphite in Ag-SG.The spherical graphite can effectively inhibit the initiation and propagation of cracks,achieving high wear resistance.展开更多
The friction and wear properties of interpenetrating phase composites(IPC) SiC3D/Al sliding against graphite/SiC(G/SiC) composites were investigated using a sub-scale brake dynamometer. The testing conditions included...The friction and wear properties of interpenetrating phase composites(IPC) SiC3D/Al sliding against graphite/SiC(G/SiC) composites were investigated using a sub-scale brake dynamometer. The testing conditions included a braking pressure of 1.25 MPa and an initial braking speed(IBS) of 200-350 km/h in a braking process of high-speed train according to the scale-conversion rules. The tribo-couple materials were characterized using scanning electron microscopy(SEM), X-ray diffractometry(XRD), and energy-dispersive X-ray spectrometry(EDS). It is found that the matching tribo-couple features low friction surface temperature, reliable friction factor, and high durability. The continuous lubricating mechanically-mixed layer(MML) forms gradually on the worn surfaces of ring in the friction process. The MML is heterogeneous, which greatly controls wear rate and coefficient of friction(COF) of the composites. The wear mechanism of SiC3D/Al is typically abrasive wear at an IBS of 200-300 km/h. When the IBS increases to 350 km/h, oxidation wear and delamination are observed. The friction behavior of the tribo-couple predicted using Solidwork simulation software agrees well with the experimental results. The tribo-couple meets the requirement of emergency braking of high-speed train.展开更多
The wear behavior and mild−severe(M−S)wear transition of Mg−10Gd−1.5Y−0.4Zr alloy were investigated within a temperature range of 20−200℃.The morphologies and compositions of worn surfaces were examined to identify t...The wear behavior and mild−severe(M−S)wear transition of Mg−10Gd−1.5Y−0.4Zr alloy were investigated within a temperature range of 20−200℃.The morphologies and compositions of worn surfaces were examined to identify the wear mechanisms using scanning electron microscope and energy dispersive X-ray spectrometer.The microstructure and hardness in the subsurfaces were analyzed to reveal the M−S wear transition mechanism.Under a constant loads of 20,35 and 40 N,each wear rate−test temperature curve presented a turning point which corresponded to the M−S wear transition.In mild wear,the surface material was plastically deformed and hence was strainhardened,whereas in severe wear,the surface material was dynamically recrystallized and consequently was softened.It has been found that the critical temperature for M−S wear transition decreases with increasing the normal load,and the normal load exhibits an almost linear relationship with critical temperature for M−S wear transition.This work reveals that the M−S wear transition of the studied alloy conforms to the surface DRX temperature criterion.展开更多
The aim of this work was to study the influence of the processing route on the microstructural constituents,hardness andtribological(wear and friction)behavior of Ti6Al4V biomedical alloy.In this sense,three different...The aim of this work was to study the influence of the processing route on the microstructural constituents,hardness andtribological(wear and friction)behavior of Ti6Al4V biomedical alloy.In this sense,three different processing routes were studied:conventional casting,hot pressing and selective laser melting.A comprehensive metallurgical,mechanical and tribologicalcharacterization was performed by X-ray diffraction analysis,Vickers hardness tests and reciprocating ball-on-plate wear tests ofTi6Al4V/Al2O3sliding pairs.The results showed a great influence of the processing route on the microstructural constituents andconsequent differences on hardness and wear performance.The highest hardness and wear resistance were obtained for Ti6Al4Valloy produced by selective laser melting,due to a markedly different cooling rate that leads to significantly different microstructurewhen compared to hot pressing and casting.This study assesses and confirms that selective laser melting is potential to producecustomized Ti6Al4V implants with improved wear performance.展开更多
Ti-6Al-4V/TiN composites were successfully consolidated by spark plasma sintering(SPS).TiN addition to Ti-6Al-4V was varied from1%to5%(volume fraction).The effect of TiN addition on the densification,microstructure,mi...Ti-6Al-4V/TiN composites were successfully consolidated by spark plasma sintering(SPS).TiN addition to Ti-6Al-4V was varied from1%to5%(volume fraction).The effect of TiN addition on the densification,microstructure,microhardness and wear behaviour of Ti-6Al-4V was studied.Experimental results showed reduction in sintered density of the compacts from99%to97%with increase in TiN content.However,an increase in microhardness value was recorded from HV0.1389to HV0.1488.X-ray diffraction(XRD)analysis showed that the intensity of diffraction peaks of TiN phase in the composites increased also with formation of small amount of secondary Ti2N phase.SEM analysis of SPS sintered nanocomposites possessed a refinement ofα/βphase microstructure in Ti-6Al-4V with the presence of uniformly dispersed TiN particles.The worn surface of the composite showed improved abrasive wear resistance with non-continuous grooves as compared to the sintered Ti-6Al-4V without TiN addition.展开更多
An attempt was made to synthesize Cu/B4C surface composite using friction stir processing(FSP) and to analyze the influence of tool rotational speed on microstructure and sliding wear behavior of the composite. The ...An attempt was made to synthesize Cu/B4C surface composite using friction stir processing(FSP) and to analyze the influence of tool rotational speed on microstructure and sliding wear behavior of the composite. The tool rotational speed was varied from 800 to 1200 r/min in step of 200 r/min. The traverse speed, axial force, groove width and tool pin profile were kept constant. Optical microscopy and scanning electron microscopy were used to study the microstructure of the fabricated surface composites. The sliding wear behavior was evaluated using a pin-on-disc apparatus. The results indicate that the tool rotational speed significantly influences the area of the surface composite and the distribution of B4C particles. Higher rotational speed exhibits homogenous distribution of B4C particles, while lower rotational speed causes poor distribution of B4C particles in the surface composite. The effects of tool rotational speed on the grain size, microhardness, wear rate, worn surface and wear debris were reported.展开更多
The graphite (Gr)/MoS2 reinforced Mg self-lubricating composites were prepared through powder metallurgy. The composites were characterized for microstructure, physical, mechanical and wear properties. Gr/MoS2 p...The graphite (Gr)/MoS2 reinforced Mg self-lubricating composites were prepared through powder metallurgy. The composites were characterized for microstructure, physical, mechanical and wear properties. Gr/MoS2 phase in the composites was identified by XRD analysis. Microstructural observation showed that the Gr/MoS2 particles were homogeneously dispersed within the magnesium matrix. Micro-hardness was measured using an applied load of 5 g with a dwell time of 15 s at room temperature. Hardness of all the composites was measured to be in the range of VHN 29?34. The mechanical properties were studied using micro-hardness, tensile and compression tests. A fractographic analysis was performed using scanning electron microscope. The highest values of hardness, compressive strength and tensile strength were attained using Mg-10MoS2 composite. A pin-on-disk tribometer was used to measure the friction coefficient and the wear loss of the sintered composites. In addition to that, the friction and wear mechanism of the composites were systematically studied by worn surface characterization and wear debris studies using SEM analysis. The reduced friction coefficient and wear loss were achieved in MoS2 rather than Gr.展开更多
Graphene/Inconel 718 composites were innovatively synthesized through selective laser melting,and the mechanical and tribological performances of the grapheme-reinforced Inconel 718 matrix composites were evaluated.Th...Graphene/Inconel 718 composites were innovatively synthesized through selective laser melting,and the mechanical and tribological performances of the grapheme-reinforced Inconel 718 matrix composites were evaluated.The composite microstructures were characterized by XRD,SEM and Raman spectroscopy.The results show that selective laser melting is a viable method to fabricate Inconel 718 matrix composite and the addition of graphene nanoplatelets leads to a significant strengthening of Inconel 718 alloy,as well as the improvement of tribological performance.The yield strength and ultimate tensile strength of 1.0%graphene/Inconel 718 composites(mass fraction)are 42%and 53%higher than those of pure material,and the friction coefficient and wear rate are 22.4%and 66.8%lower than those of pure material.The decrease of fraction coefficient and wear rate is attributed to the improved hardness of composites and the formation of graphene nanoplatelet protective layer on the worn surfaces.展开更多
The Fe-based coatings in powder form were deposited on a steel type E335 by flame spraying technique.The effects of the post heat treatment on the microstructure and the mechanical properties of sprayed coatings were ...The Fe-based coatings in powder form were deposited on a steel type E335 by flame spraying technique.The effects of the post heat treatment on the microstructure and the mechanical properties of sprayed coatings were studied.Post heat treatment was conducted in a furnace in air at 623 K,823 K and 1023 K for 1 h and then cooled in air.The results showed that with the increase of annealing temperature,the microstructure of coating treated at 823 K and 1023 K had several changes as follows:the reduction of porosity,formation of carbides and oxides.It was found that the solid solution FCC(Fe,Ni),intermetallic compound AlFe3 and carbides[Fe,C]were the main phases for coatings as-sprayed and treated at 623 K and while iron carbide,molybdenum carbide and oxide as Fe3O4 became the main phases and reinforced the solid solution FCC(Fe,Ni)phase for annealed coatings at 823 K.However,it was observed the disappearance of molybdenum carbide and oxide Fe3O4 at 1023 K.The coating annealed at 823 K exhibited an excellent wear resistance than the as-sprayed and annealed coatings at 623 K and 1023 K and shows the lower wear rate than another coating treated or as sprayed.展开更多
The effects of MoS2 content on microstructure, density, hardness and wear resistance of pure copper were studied. Copper-based composites containing 0-10%(mass fraction) MoS2 particles were fabricated by mechanical ...The effects of MoS2 content on microstructure, density, hardness and wear resistance of pure copper were studied. Copper-based composites containing 0-10%(mass fraction) MoS2 particles were fabricated by mechanical milling and hot pressing from pure copper and MoS2 powders. Wear resistance was evaluated in dry sliding condition using a pin on disk configuration at a constant sliding speed of 0.2 m/s. Hardness measurements showed a critical MoS2 content of 2.5% at which a hardness peak was attained. Regardless of the applied normal load, the lowest coefficient of friction and wear loss were attained for Cu/2.5 MoS2 composite. While coefficient of friction decreased when the applied normal load was raised from 1 to 4 N at any reinforcement content, the wear volume increased with increasing normal load. SEM micrographs from the worn surfaces and debris revealed that the wear mechanism was changed from mainly adhesion in pure copper to a combination of abrasion and delamination in Cu/MoS2 composites.展开更多
Eutectic high entropy alloys(EHEAs)have high temperature stability,good mechanical properties,and are promising for tribological applications at high temperatures.To study the high temperature lubrication behavior,Fe_...Eutectic high entropy alloys(EHEAs)have high temperature stability,good mechanical properties,and are promising for tribological applications at high temperatures.To study the high temperature lubrication behavior,Fe_(22)Co_(26)Cr_(20)Ni_(22)Ta_(10)−(BaF_(2)/CaF_(2))x(x=3−20,wt.%)composites were prepared by spark plasma sintering(SPS),with BaF_(2)/CaF_(2) eutectic powder used as solid lubricant.The lubrication behavior and mechanical properties were studied at both room and high temperatures.With the increase of the content of BaF_(2)/CaF_(2) eutectic powder,the friction coefficients and the wear rates of the composites at 600 and 800℃ decrease significantly.The composites with eutectic powder content of 15 and 20 wt.%have the best lubricating performance at 600℃,with low friction coefficient and wear rates,mainly due to the good mechanical properties of EHEA matrix,the lubrication effect of BaF_(2)/CaF_(2) phase and the oxides formed on the worn surface.展开更多
In the present research work on TC21 titanium alloy(6.5 Al-3 Mo-1.9 Nb-2.2 Sn-2.2 Zr-1.5 Cr), the effects of cold deformation, solution treatment with different cooling rates and then aging on microstructure, hardness...In the present research work on TC21 titanium alloy(6.5 Al-3 Mo-1.9 Nb-2.2 Sn-2.2 Zr-1.5 Cr), the effects of cold deformation, solution treatment with different cooling rates and then aging on microstructure, hardness and wear property were investigated. A cold deformation at room temperature with 15% reduction in height was applied on annealed samples. The samples were solution-treated at 920 ℃ for 15 min followed by different cooling rates of water quenching(WQ), air cooling(AC) and furnace cooling(FC) to room temperature. Finally, the samples were aged at 590 ℃ for 4 h. Secondary α-platelets precipitated in residual β-phase in the case of solution-treated samples with AC condition and aged ones. The maximum hardness of HV 470 was obtained for WQ + aging condition due to the presence of high amount of residual β-matrix(69%), while the minimum hardness of HV 328 was reported for FC condition. Aging process after solution treatment can considerably enhance the wear property and this enhancement can reach up to about 122% by applying aging after WQ compared with the annealed samples.展开更多
The effects of thermal treatments on the structure, mechanical properties, wear resistance, and in vitro corrosion protection in artificial saliva(AS) were investigated for a newly developed Ti20 Nb13 Zr(TNZ) alloy. X...The effects of thermal treatments on the structure, mechanical properties, wear resistance, and in vitro corrosion protection in artificial saliva(AS) were investigated for a newly developed Ti20 Nb13 Zr(TNZ) alloy. XRD and SEM analyses were used for structural and microstructural analysis. The in vitro corrosion properties of the samples were investigated using electrochemical impedance spectroscopy and linear polarization resistance techniques up to an immersion time of 168 h. The tribological characteristics were evaluated with a linear reciprocating tribometer. SEM analysis showed that solution treatment and aging influenced the size and distribution of α phase. The air-cooled and aged samples exhibited the highest microhardness and macrohardness, for which the wear resistances were 25% and 30% higher than that of the untreated sample, respectively. The cooling rate significantly influenced the corrosion resistance of the TNZ samples. The treated samples showed a reduced corrosion rate(50%) for long immersion time up to 168 h in AS. The furnace-cooled and aged samples exhibited the highest corrosion resistance after 168 h of immersion in AS. Among the treated samples, the aged sample showed enhanced mechanical properties, wear behavior, and in vitro corrosion resistance in AS.展开更多
基金Project(20080440850) supported by China Postdoctoral Science FoundationProject(ZJY0605-02) supported by the Natural Science Foundation of Heilongjiang Province,ChinaProject(HIT.NSRIF.2012002) supported by the Fundamental Research Funds for the Central Universities,China
文摘In order to study the effect of element Nb on the microstructure and properties of the biomedical β-type Ti-Mo based alloys,Ti-15Mo-xNb(x=5,10,15 and 20 in %) alloys were investigated.The dry wear resistance of β-type Ti-15Mo-xNb alloys against Gr15 ball was investigated on CJS111A ball-disk wear instrument.Experimental results indicate that crystal structure and morphology of the Ti-15Mo-xNb alloys are sensitive to their Nb contents.Ti-15Mo-xNb alloys match those for β phase peaks and no any phases are found.The Vickers hardness values of all the Ti-15Mo-xNb alloys are higher than HV200.The compression yield strength of the Ti-15Mo-5Nb alloy is the lowest and that of the Ti-15Mo-10Nb alloy is the highest.For all the Ti-15Mo-xNb alloys,the friction coefficient is not constant but takes a higher value.In dry condition,SEM study reveals deep parallel scars on the wear surfaces of all the Ti-15Mo-xNb alloys under different loads.The friction coefficient of the Ti-15Mo-5Nb alloy under 1 N is the lowest.The wear principal mechanism for Ti-15Mo-xNb alloys is adhesive wear.
文摘TiC particle reinforced 420 stainless steel matrix composites were fabricated, and the microstructure, tensile properties and wear resistance of the composites were studied. The experimental results indicate that the distribution of TiC particles with size of 5 to 10 μm in diameter is uniform if the volume fraction of TiC is lower than 6%. However, slight agglomeration can be observed when the TiC content exceeds 6%. With the increase of TiC content the tensile and yield strength of the composites prepared increases and reaches the maximum when the volume fraction of TiC increases to 5%. Further increase of TiC content causes reductions of yield and tensile strength. The ductility of the composites shows a monotone decrease with the increase of TiC addition. The introduction of TiC into 420 stainless steel results in significant improvement on wear resistance, which reaches a steady level when the volume fraction of TiC increases to 11% and does not show obvious variation if the TiC content is further increased.
基金Projects(50674067,51074106)supported by the National Natural Science Foundation of ChinaProject(2011BAE22B01-5)supported by the National Key Technologies R&D Program during the 12th Five-Year Plan Period,ChinaProject(09JC1408200)supported by the Science and Technology Commission of Shanghai Municipality,China
文摘Mg-xSi (x=0, 1.5, 3.3) alloys were fabricated and subjected to cyclic closed-die forging (CCDF), a new severe plastic deformation process, at 450 ℃ for 1, 3, and 5 passes. With applying CCDF, tensile strength, elongation and hardness increase, while coarse Mg2Si particles break into smaller pieces and exhibit more uniform distribution. Mg-1.5%Si alloy exhibits a combination of improved strength and elongation after 5 passes of CCDF processing. The tensile strength is about 142 MPa and elongation is about 8%. The improvement in mechanical properties was further characterized by dry sliding wear testing. The results show that wear resistance improves with silicon content and CCDF process passes, particularly the first pass. The wear resistance increases by about 38% for Mg-3.3%Si after 5 passes of CCDF compared with pure Mg. The improvement of wear is related to microstructure refinement and homogenization based on the Archard equation and friction effect.
文摘Underwater friction stir processing was performed on commercially pure copper with a purity of 99.8% and a copper-zinc alloy(brass). The tool was made of tungsten carbide in the threaded cone form. Friction stir processing was performed at a tool rotational speed of 1800 r/min and a tool transverse speed of 4 mm/min while the samples were immersed in a water tank with a water circulation system. In order to evaluate the effect of the number of process passes on the microstructure and mechanical properties of the samples, this process was continued for up to 6 passes. Microscopic studies using light microscopy on commercially pure copper samples show significant decrease in grain size. Likewise, the hardness of the cross-sectional area shows an increase more than the base metal. The X-ray diffraction pattern of the underwater friction stir processed samples in comparison to that of the base metal exhibits shorter and wider peaks, while the background of the pattern is increased. The sum of these factors represents the formation of an amorphous/ultrafine grained structure. Also, the wear behavior of the samples was investigated by means of pin-on-disk method and the results show that the friction coefficient of processed samples is decreased compared to that of the base metal. The results of wear and hardness tests show that the underwater friction stir processing can significantly improve the wear resistance and hardness of commercially pure copper and brass.
基金Project(51674304)supported by the National Natural Science Foundation of ChinaProject(2018JJ3677)supported by Natural Science Foundation of Hunan Province,China。
文摘Two kinds of Ag-graphite composites reinforced with spherical graphite(SG)and conventional flake graphite(FG)were prepared by powder metallurgy technology.The effect of graphite morphology on the tribological behavior for the Ag-SG and Ag-FG under the dry sliding wear was investigated with a pin-on-disk tribometer at a load of 3.0 N in atmosphere condition.The results indicated that the minimum wear rate of 3.5×10^-5 mm^3/(N·m)for Ag-FG was achieved and it reduced by nearly an order of magnitude,reaching 1.6×10^-6 mm^3/(N·m)for the Ag-SG.The obviously different tribological behaviors between the Ag-SG and Ag-FG were closely related to the formation of cracks in the sub-surface.The stress concentration tended to generate at the edges of flake graphite during sliding process,which resulted in the cracks and severe delamination wear of Ag-FG.However,no cracks were found around the spherical graphite in Ag-SG.The spherical graphite can effectively inhibit the initiation and propagation of cracks,achieving high wear resistance.
基金Project(51465014)supported by the National Natural Science Foundation of ChinaProject(1099043)supported by Scientific and Technological Research Program of Guangxi,ChinaProjects(2014GXNSFAA118351,2014GXNSFAA118329,2012GXNSFBA053156)supported by the Natural Science Foundation of Guangxi,China
文摘The friction and wear properties of interpenetrating phase composites(IPC) SiC3D/Al sliding against graphite/SiC(G/SiC) composites were investigated using a sub-scale brake dynamometer. The testing conditions included a braking pressure of 1.25 MPa and an initial braking speed(IBS) of 200-350 km/h in a braking process of high-speed train according to the scale-conversion rules. The tribo-couple materials were characterized using scanning electron microscopy(SEM), X-ray diffractometry(XRD), and energy-dispersive X-ray spectrometry(EDS). It is found that the matching tribo-couple features low friction surface temperature, reliable friction factor, and high durability. The continuous lubricating mechanically-mixed layer(MML) forms gradually on the worn surfaces of ring in the friction process. The MML is heterogeneous, which greatly controls wear rate and coefficient of friction(COF) of the composites. The wear mechanism of SiC3D/Al is typically abrasive wear at an IBS of 200-300 km/h. When the IBS increases to 350 km/h, oxidation wear and delamination are observed. The friction behavior of the tribo-couple predicted using Solidwork simulation software agrees well with the experimental results. The tribo-couple meets the requirement of emergency braking of high-speed train.
基金financial support from the National Natural Science Foundation of China (No.51775226)。
文摘The wear behavior and mild−severe(M−S)wear transition of Mg−10Gd−1.5Y−0.4Zr alloy were investigated within a temperature range of 20−200℃.The morphologies and compositions of worn surfaces were examined to identify the wear mechanisms using scanning electron microscope and energy dispersive X-ray spectrometer.The microstructure and hardness in the subsurfaces were analyzed to reveal the M−S wear transition mechanism.Under a constant loads of 20,35 and 40 N,each wear rate−test temperature curve presented a turning point which corresponded to the M−S wear transition.In mild wear,the surface material was plastically deformed and hence was strainhardened,whereas in severe wear,the surface material was dynamically recrystallized and consequently was softened.It has been found that the critical temperature for M−S wear transition decreases with increasing the normal load,and the normal load exhibits an almost linear relationship with critical temperature for M−S wear transition.This work reveals that the M−S wear transition of the studied alloy conforms to the surface DRX temperature criterion.
基金supported by FTC through the projects PTDC/EMS-TEC/5422/2014 and EXCL/EMS-TEC/ 0460/2012the grant SFRH/BPD/112111/2015+1 种基金supported by FCT with the reference project UID/EEA/04436/2013by FEDER funds through the COMPETE 2020-Programa Operacional Competitividade e Internacionalizacao (POCI) with the reference project POCI-01-0145FEDER-006941.
文摘The aim of this work was to study the influence of the processing route on the microstructural constituents,hardness andtribological(wear and friction)behavior of Ti6Al4V biomedical alloy.In this sense,three different processing routes were studied:conventional casting,hot pressing and selective laser melting.A comprehensive metallurgical,mechanical and tribologicalcharacterization was performed by X-ray diffraction analysis,Vickers hardness tests and reciprocating ball-on-plate wear tests ofTi6Al4V/Al2O3sliding pairs.The results showed a great influence of the processing route on the microstructural constituents andconsequent differences on hardness and wear performance.The highest hardness and wear resistance were obtained for Ti6Al4Valloy produced by selective laser melting,due to a markedly different cooling rate that leads to significantly different microstructurewhen compared to hot pressing and casting.This study assesses and confirms that selective laser melting is potential to producecustomized Ti6Al4V implants with improved wear performance.
文摘Ti-6Al-4V/TiN composites were successfully consolidated by spark plasma sintering(SPS).TiN addition to Ti-6Al-4V was varied from1%to5%(volume fraction).The effect of TiN addition on the densification,microstructure,microhardness and wear behaviour of Ti-6Al-4V was studied.Experimental results showed reduction in sintered density of the compacts from99%to97%with increase in TiN content.However,an increase in microhardness value was recorded from HV0.1389to HV0.1488.X-ray diffraction(XRD)analysis showed that the intensity of diffraction peaks of TiN phase in the composites increased also with formation of small amount of secondary Ti2N phase.SEM analysis of SPS sintered nanocomposites possessed a refinement ofα/βphase microstructure in Ti-6Al-4V with the presence of uniformly dispersed TiN particles.The worn surface of the composite showed improved abrasive wear resistance with non-continuous grooves as compared to the sintered Ti-6Al-4V without TiN addition.
文摘An attempt was made to synthesize Cu/B4C surface composite using friction stir processing(FSP) and to analyze the influence of tool rotational speed on microstructure and sliding wear behavior of the composite. The tool rotational speed was varied from 800 to 1200 r/min in step of 200 r/min. The traverse speed, axial force, groove width and tool pin profile were kept constant. Optical microscopy and scanning electron microscopy were used to study the microstructure of the fabricated surface composites. The sliding wear behavior was evaluated using a pin-on-disc apparatus. The results indicate that the tool rotational speed significantly influences the area of the surface composite and the distribution of B4C particles. Higher rotational speed exhibits homogenous distribution of B4C particles, while lower rotational speed causes poor distribution of B4C particles in the surface composite. The effects of tool rotational speed on the grain size, microhardness, wear rate, worn surface and wear debris were reported.
文摘The graphite (Gr)/MoS2 reinforced Mg self-lubricating composites were prepared through powder metallurgy. The composites were characterized for microstructure, physical, mechanical and wear properties. Gr/MoS2 phase in the composites was identified by XRD analysis. Microstructural observation showed that the Gr/MoS2 particles were homogeneously dispersed within the magnesium matrix. Micro-hardness was measured using an applied load of 5 g with a dwell time of 15 s at room temperature. Hardness of all the composites was measured to be in the range of VHN 29?34. The mechanical properties were studied using micro-hardness, tensile and compression tests. A fractographic analysis was performed using scanning electron microscope. The highest values of hardness, compressive strength and tensile strength were attained using Mg-10MoS2 composite. A pin-on-disk tribometer was used to measure the friction coefficient and the wear loss of the sintered composites. In addition to that, the friction and wear mechanism of the composites were systematically studied by worn surface characterization and wear debris studies using SEM analysis. The reduced friction coefficient and wear loss were achieved in MoS2 rather than Gr.
基金Project supported by the Ganpo 555 Program for Leading Talents of Jiangxi Province,China
文摘Graphene/Inconel 718 composites were innovatively synthesized through selective laser melting,and the mechanical and tribological performances of the grapheme-reinforced Inconel 718 matrix composites were evaluated.The composite microstructures were characterized by XRD,SEM and Raman spectroscopy.The results show that selective laser melting is a viable method to fabricate Inconel 718 matrix composite and the addition of graphene nanoplatelets leads to a significant strengthening of Inconel 718 alloy,as well as the improvement of tribological performance.The yield strength and ultimate tensile strength of 1.0%graphene/Inconel 718 composites(mass fraction)are 42%and 53%higher than those of pure material,and the friction coefficient and wear rate are 22.4%and 66.8%lower than those of pure material.The decrease of fraction coefficient and wear rate is attributed to the improved hardness of composites and the formation of graphene nanoplatelet protective layer on the worn surfaces.
文摘The Fe-based coatings in powder form were deposited on a steel type E335 by flame spraying technique.The effects of the post heat treatment on the microstructure and the mechanical properties of sprayed coatings were studied.Post heat treatment was conducted in a furnace in air at 623 K,823 K and 1023 K for 1 h and then cooled in air.The results showed that with the increase of annealing temperature,the microstructure of coating treated at 823 K and 1023 K had several changes as follows:the reduction of porosity,formation of carbides and oxides.It was found that the solid solution FCC(Fe,Ni),intermetallic compound AlFe3 and carbides[Fe,C]were the main phases for coatings as-sprayed and treated at 623 K and while iron carbide,molybdenum carbide and oxide as Fe3O4 became the main phases and reinforced the solid solution FCC(Fe,Ni)phase for annealed coatings at 823 K.However,it was observed the disappearance of molybdenum carbide and oxide Fe3O4 at 1023 K.The coating annealed at 823 K exhibited an excellent wear resistance than the as-sprayed and annealed coatings at 623 K and 1023 K and shows the lower wear rate than another coating treated or as sprayed.
文摘The effects of MoS2 content on microstructure, density, hardness and wear resistance of pure copper were studied. Copper-based composites containing 0-10%(mass fraction) MoS2 particles were fabricated by mechanical milling and hot pressing from pure copper and MoS2 powders. Wear resistance was evaluated in dry sliding condition using a pin on disk configuration at a constant sliding speed of 0.2 m/s. Hardness measurements showed a critical MoS2 content of 2.5% at which a hardness peak was attained. Regardless of the applied normal load, the lowest coefficient of friction and wear loss were attained for Cu/2.5 MoS2 composite. While coefficient of friction decreased when the applied normal load was raised from 1 to 4 N at any reinforcement content, the wear volume increased with increasing normal load. SEM micrographs from the worn surfaces and debris revealed that the wear mechanism was changed from mainly adhesion in pure copper to a combination of abrasion and delamination in Cu/MoS2 composites.
基金The authors acknowledge the financial support from the National Natural Science Foundation of China(51671217).
文摘Eutectic high entropy alloys(EHEAs)have high temperature stability,good mechanical properties,and are promising for tribological applications at high temperatures.To study the high temperature lubrication behavior,Fe_(22)Co_(26)Cr_(20)Ni_(22)Ta_(10)−(BaF_(2)/CaF_(2))x(x=3−20,wt.%)composites were prepared by spark plasma sintering(SPS),with BaF_(2)/CaF_(2) eutectic powder used as solid lubricant.The lubrication behavior and mechanical properties were studied at both room and high temperatures.With the increase of the content of BaF_(2)/CaF_(2) eutectic powder,the friction coefficients and the wear rates of the composites at 600 and 800℃ decrease significantly.The composites with eutectic powder content of 15 and 20 wt.%have the best lubricating performance at 600℃,with low friction coefficient and wear rates,mainly due to the good mechanical properties of EHEA matrix,the lubrication effect of BaF_(2)/CaF_(2) phase and the oxides formed on the worn surface.
文摘In the present research work on TC21 titanium alloy(6.5 Al-3 Mo-1.9 Nb-2.2 Sn-2.2 Zr-1.5 Cr), the effects of cold deformation, solution treatment with different cooling rates and then aging on microstructure, hardness and wear property were investigated. A cold deformation at room temperature with 15% reduction in height was applied on annealed samples. The samples were solution-treated at 920 ℃ for 15 min followed by different cooling rates of water quenching(WQ), air cooling(AC) and furnace cooling(FC) to room temperature. Finally, the samples were aged at 590 ℃ for 4 h. Secondary α-platelets precipitated in residual β-phase in the case of solution-treated samples with AC condition and aged ones. The maximum hardness of HV 470 was obtained for WQ + aging condition due to the presence of high amount of residual β-matrix(69%), while the minimum hardness of HV 328 was reported for FC condition. Aging process after solution treatment can considerably enhance the wear property and this enhancement can reach up to about 122% by applying aging after WQ compared with the annealed samples.
基金funding support providing by King Fahd University of Petroleum & Minerals through Project (SR161015)。
文摘The effects of thermal treatments on the structure, mechanical properties, wear resistance, and in vitro corrosion protection in artificial saliva(AS) were investigated for a newly developed Ti20 Nb13 Zr(TNZ) alloy. XRD and SEM analyses were used for structural and microstructural analysis. The in vitro corrosion properties of the samples were investigated using electrochemical impedance spectroscopy and linear polarization resistance techniques up to an immersion time of 168 h. The tribological characteristics were evaluated with a linear reciprocating tribometer. SEM analysis showed that solution treatment and aging influenced the size and distribution of α phase. The air-cooled and aged samples exhibited the highest microhardness and macrohardness, for which the wear resistances were 25% and 30% higher than that of the untreated sample, respectively. The cooling rate significantly influenced the corrosion resistance of the TNZ samples. The treated samples showed a reduced corrosion rate(50%) for long immersion time up to 168 h in AS. The furnace-cooled and aged samples exhibited the highest corrosion resistance after 168 h of immersion in AS. Among the treated samples, the aged sample showed enhanced mechanical properties, wear behavior, and in vitro corrosion resistance in AS.