期刊文献+
共找到10篇文章
< 1 >
每页显示 20 50 100
皮肤改善剂及其制法
1
《企业科技与发展》 1996年第6期15-15,共1页
光阴荏苒,岁月无情,人到中年皮肤就会失去光泽,变得粗糙甚至出现皱纹。因此,人们希望获得能够防止皮肤粗糙老化,消除皱纹,使皮肤恢复青春活力的皮肤改善剂。本文介绍的含大米提取物的皮肤改善剂,可充分满足上述要求,而且制作简单,价格便... 光阴荏苒,岁月无情,人到中年皮肤就会失去光泽,变得粗糙甚至出现皱纹。因此,人们希望获得能够防止皮肤粗糙老化,消除皱纹,使皮肤恢复青春活力的皮肤改善剂。本文介绍的含大米提取物的皮肤改善剂,可充分满足上述要求,而且制作简单,价格便宜,使用安全可靠。 该皮肤改善剂的制取简单易行。首先,将糙米或者白米用粉碎机或者磨米机磨成粉,然后加水或者乙醇等有机溶剂进行提取。不将米粉碎亦可。 展开更多
关键词 皮肤粗糙 提取物 溶剂 压榨液 提取方法 糊化现象 压榨 提取时间 磨米机 乙醇
下载PDF
Microstructure characterization and hydrogen desorption behaviors of Mg-Al-H powders prepared by reactive milling in hydrogen 被引量:3
2
作者 王瑶 曾小勤 +3 位作者 邹建新 李德江 吴晓梅 丁文江 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第10期3112-3118,共7页
Microstructure and phase evolutions of Mg-A1 powders ball milled in hydrogen atmosphere were investigated. Both in Mg-3%A1 (mass fraction) and Mg-9%AI systems, fl-MgH2 phase was observed upon a short milling time of... Microstructure and phase evolutions of Mg-A1 powders ball milled in hydrogen atmosphere were investigated. Both in Mg-3%A1 (mass fraction) and Mg-9%AI systems, fl-MgH2 phase was observed upon a short milling time of 4 h and its maximum content of-80% was reached after 32 h. Neither as-milled powders of the in the two systems contain Mgl7All2. However, heating the milled powders of Mg-9%AI powders to 350 ~C resulted in the precipitation of Mg17A112. DTA/TG analyses of those powders milled for 8-40 h showed that either well-developed peak doublets or shoulders were observed, which plausibly corresponded to the separate hydrogen desorption from different particle fractions offl-MgH2. 展开更多
关键词 Mg alloy reaction milling HYDRIDING nanocrystalline magnesium hydride peak doublets
下载PDF
Effect of carbon nanotube and silicon carbide on microstructure and dry sliding wear behavior of copper hybrid nanocomposites 被引量:1
3
作者 H.M.MALLIKARJUNA C.S.RAMESH +2 位作者 P.G.KOPPAD R.KESHAVAMURTHY K.T.KASHYAP 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第12期3170-3182,共13页
Microstructure and tribological properties of copper-based hybrid nanocomposites reinforced with copper coatedmultiwalled carbon nanotubes (MWCNTs) and silicon carbide (SiC) were studied. Carbon nanotube was varied fr... Microstructure and tribological properties of copper-based hybrid nanocomposites reinforced with copper coatedmultiwalled carbon nanotubes (MWCNTs) and silicon carbide (SiC) were studied. Carbon nanotube was varied from 1% to 4% withsilicon carbide content being fixed at 4%. The synthesis of copper hybrid nanocomposites involves ball milling, cold pressing andsintering followed by hot pressing. The developed hybrid nanocomposites were subjected to density, grain size, and hardness tests.The tribological performances of the nanocomposites were assessed by carrying out dry sliding wear tests using pin-on-steel disctribometer at different loads. A significant decrease in grain size was observed for the developed hybrid composites when comparedwith pure copper. An improvement of 80% in the micro-hardness of the hybrid nanocomposite has been recorded for 4% carbonnanotubes reinforced hybrid composites when compared with pure copper. An increase in content of CNTs in the hybridnanocomposites results in lowering of the friction coefficient and wear rates of hybrid nanocomposites. 展开更多
关键词 COPPER carbon nanotubes (CNTs) SiC MICROHARDNESS wear mechanisms NANOCOMPOSITE
下载PDF
Sliding wear behaviour of AZ31B magnesium alloy and nano-composite 被引量:4
4
作者 M.SRINIVASAN C.LOGANATHAN +3 位作者 M.KAMARAJ Q.B.NGUYEN M.GUPTA R.NARAYANASAMY 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第1期60-65,共6页
AZ31B magnesium alloy and nano-composite were manufactured by hybrid casting process and hot extruded at 350 °C. The sliding wear behaviour of alloy and nano-composite was estimated at room temperature using the ... AZ31B magnesium alloy and nano-composite were manufactured by hybrid casting process and hot extruded at 350 °C. The sliding wear behaviour of alloy and nano-composite was estimated at room temperature using the standard pin-on-disc wear test equipment. The tests were conducted under a normal load of 10 N at different sliding speeds ranging from 0.60 to 1.2 m/s for distance up to 2000 m. The wear mechanisms of the worn out surface were studied using SEM analysis. The influence of test parameters on wear rate of the pins was established using a linear regression model statistically. Compared with the AZ31B magnesium alloy, the nano-composite shows lower wear rates due to higher hardness improvement caused by the reinforcement. The wear mechanism appears to be a mix-up of ploughing, rows of furrows, delamination and oxidation. 展开更多
关键词 AZ31B magnesium alloy nano composite wear mechanism
下载PDF
Tribological behavior of A356-CNT nanocomposites fabricated by various casting techniques 被引量:10
5
作者 Benyamin ABBASIPOUR Behzad NIROUMAND +1 位作者 Sayed Mahmoud MONIR VAGHEFI Mohammad ABEDI 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2019年第10期1993-2004,共12页
Tribological behaviors of monolithic A356 aluminum alloy castings and A356.CNT nanocomposite castings, fabricated by fully liquid and semisolid routes were examined. Samples were prepared by melt agitation, rheocastin... Tribological behaviors of monolithic A356 aluminum alloy castings and A356.CNT nanocomposite castings, fabricated by fully liquid and semisolid routes were examined. Samples were prepared by melt agitation, rheocasting, stir casting, and compocasting techniques. Effects of addition of carbon nanotubes (CNTs), casting process and the applied load on wear properties and mechanisms were investigated. It was found that wear loss, wear rate and friction coefficient of nanocomposite samples remarkably declined by the addition of CNTs. Moreover, changing the casting process from fully liquid to semisolid routes, plus increasing fractions of the primary phase were the two factors that improved the wear properties of the investigated samples, especially nanocomposite ones. In addition, it was revealed that adhesion and delamination were the dominant wear mechanism of the monolithic samples produced by fully liquid and semisolid routes, respectively. However, regardless of fabrication techniques, the abrasion was the main wear mechanism of nanocomposite samples. 展开更多
关键词 A356 aluminum alloys NANOCOMPOSITE compocasting carbon nanotube (CNT) wear mechanism wear properties
下载PDF
Formation mechanism and wear behavior of gradient nanostructured Inconel 625 alloy 被引量:5
6
作者 Yu-bi GAO Xiu-yan LI +3 位作者 Yuan-jun MA Matthew KITCHEN Yu-tian DING Quan-shun LUO 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2022年第6期1910-1925,共16页
The formation mechanism and wear behavior of a gradient nanostructured(GNS) Inconel 625 alloy were investigated using SEM, TEM and ball-on-disc sliding wear tester. The results show that surface mechanical grinding tr... The formation mechanism and wear behavior of a gradient nanostructured(GNS) Inconel 625 alloy were investigated using SEM, TEM and ball-on-disc sliding wear tester. The results show that surface mechanical grinding treatment(SMGT) induced an approximately 800 μm-deep gradient microstructure, consisting of surface nano-grained,nano-laminated, nano-twined, and severely deformed layers, which resulted in a reduced gradient in micro-hardness from 6.95 GPa(topmost surface) to 2.77 GPa(coarse-grained matrix). The nano-grained layer resulted from the formation of high-density nano-twins and subsequent interaction between nano-twins and dislocations. The width and depth of the wear scar, wear loss volume, and wear rate of the SMGT-treated sample were smaller than those of untreated coarse-grained sample. Moreover, the wear mechanisms for both samples were mainly abrasive wear and adhesive wear, accompanied with mild oxidation wear. The notable wear resistance enhancement of the GNS Inconel 625 alloy was attributed to the high micro-hardness, high residual compressive stress, and high strain capacity of the GNS surface layer. 展开更多
关键词 Inconel 625 alloy surface mechanical grinding treatment gradient nanostructure formation mechanism wear behavior residual stress
下载PDF
Effect of SiC content on dry sliding wear, corrosion and corrosive wear of Al/SiC nanocomposites 被引量:3
7
作者 Sareh MOSLEH-SHIRAZI Farshad AKHLAGHI Dong-yang LI 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第7期1801-1808,共8页
The corrosion, corrosive wear and dry sliding wear of nanocomposites, are extremely complicated and involve various chemical, physical anbd mechanical factors. The aim of this work is to investigate the effects of nan... The corrosion, corrosive wear and dry sliding wear of nanocomposites, are extremely complicated and involve various chemical, physical anbd mechanical factors. The aim of this work is to investigate the effects of nanosized SiC content on the hardness, dry sliding wear, corrosion and corrosive wear of Al/SiC nanocomposites synthesized by mechanical milling cold pressing and hot extrusion. The corrosion resistance of these composites in 3%NaCl solution was investigated by electrochemical polarization testing and their dry sliding as well as corrosive wear resistance in the same solution was evaluated using a pin-on-disc tester. The microstructures of the samples and their worn surfaces were examined using scanning electron microscopy. It was shown that the dry sliding wear and corrosion resistance of these nanocomposites were improved with the increase of SiC content. It was concluded that due to the lubrication effect of the solution, both the friction coefficient and frictional heat that might soften the material were reduced. In addition, the improved strength of the nanocomposites combined with their better corrosion resistance contributed to their increased corrosive wear resistance, compared with the base alloy. The prominent wear mechanism in the unreinforced alloy was adhesive wear, in the Al/SiC nanocomposites, the wear mechanism changed to abrasive. 展开更多
关键词 Al 6061 SIC NANOCOMPOSITE mechanical milling CORROSION dry sliding wear corrosive wear
下载PDF
The Effect of Counter-face Roughness on the Tribological Behavior of Filled and Unfilled PTFE 被引量:3
8
作者 Zeynep Parlar Shahrad Samankan Vedat Temiz 《Journal of Mechanics Engineering and Automation》 2015年第11期609-615,共7页
Since the wear problems play a crucial role in the relatively moving systems, in this paper, the effect of counter-face roughness on the wear of extruded PTFE (polytetrafluoroethylene) which is a very common materia... Since the wear problems play a crucial role in the relatively moving systems, in this paper, the effect of counter-face roughness on the wear of extruded PTFE (polytetrafluoroethylene) which is a very common material for sliding bearing applications has been investigated to contribute related literature. PTFE is well-known for its exceptional tribological properties, and good toughness, and high thermal stability. It can also be used in dry sliding applications. PTFE is commonly used to reduce friction between relatively moving surfaces, lts wear rate can be reduced by adding micro or nano-sized fillers such as Al2O3, TiO2, SiO2, MoS2, Al, Pb, ZnO, Cu, ZrO2, Ni, CNF (carbon nano fiber), carbon fiber, glass fiber, bronze, and graphite powder into the PTFE. In this study, an experimental research was carried out for filled and unfilled PTFE to compare their behaviors under different speeds and loads. Test materials were unfilled PTFE, PTFE + wt. 5% Al2O3, PTFE + wt. 15% Al2O3. Formation of transfer film was examined in dry sliding condition against stainless steel counter faces. All tribological tests were carried out in a commercially available tribo-tester sliding against AISI-416 C stainless steel. As a result of a series of systematic experiments, remarkable results have been obtained to make a distinctive comparison between unfilled and filled PTFE. The variation of friction coefficient with sliding distance during the tests has also been recorded. At the end of the tests, wear rate of related PTFE specimen was calculated based on measured data. Wear rate is found very high for unfilled PTFE, however, the lowest wear rate is recorded for PTFE + wt. 15% Al2O3 as expected. The coefficient of friction remained approximately stable during the wear tests. Transfer films were inspected by observing the discs' surface with optical microscope. 展开更多
关键词 Wear friction PTFE Al2O3 surface roughness.
下载PDF
Effects of combined additions of SiO2 and MoS2 nanoparticles as lubricant additive on the tribological properties of AZ31 magnesium alloy 被引量:2
9
作者 XIE HongMei JIANG Bin +2 位作者 WANG QingHang XIA XiangSheng PAN FuSheng 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2016年第5期689-698,共10页
The tribological properties of combinative addition of nano-MoS2 and nano-SiO2 to the base oil have been investigated with a reciprocating ball-on-plate tribotester for magnesium alloy-steel contacts. The results demo... The tribological properties of combinative addition of nano-MoS2 and nano-SiO2 to the base oil have been investigated with a reciprocating ball-on-plate tribotester for magnesium alloy-steel contacts. The results demonstrate that the optimum mass ratio of nano-SiO2 to nano-MoS2 is 0.25:0.75. The optimum combinative addition into the base oil reduces the friction coefficient by 43.8% and the surface roughness (Sa) by 31.7% when compared to that found with the base oil. Meanwhile, the combinative addition of nano-MoS2 and nano-SiO〉 in comparison with single nanoparticles addition, is more pronounced in terms of the lubrication film stability. The excellent tribological properties of the SiO2/MoS2 combinations are attributed to the formation of physical adsorption films and tribochemical products during the rubbing process and the micro-cooperation of various nano- particles with different shapes and lubrication mechanisms. 展开更多
关键词 NANO-MOS2 nano-Si02 lubricant additive tribological properties magnesium alloy
原文传递
Shear of molecular deposition films on glass substrates determined by tribometer 被引量:2
10
作者 GUO YanBao WANG DeGuo +1 位作者 LIU ShuHai ZHANG SiWei 《Science China(Technological Sciences)》 SCIE EI CAS 2011年第4期1005-1010,共6页
The ultrathin polyelectrolyte molecular deposition films and polyelectrolyte composite nanoparticles molecular deposition films were prepared using layer-by-layer molecular deposition method and in situ growth method.... The ultrathin polyelectrolyte molecular deposition films and polyelectrolyte composite nanoparticles molecular deposition films were prepared using layer-by-layer molecular deposition method and in situ growth method.A micro-tribometer has been developed to measure the shear response of those ultrathin molecular deposition films.By using a smooth steel sphere in a ball-on-flat configuration,the shear force was determined for molecular deposition films on glass substrate for different layers.The results indicate that the shear behaviors of molecular deposition film were mainly determined with the contact area and film layers.Moreover,the composite molecular deposition film with nanoparticles has better shear behaviors than the polyelectrolyte molecular deposition film.The shear force of polyelectrolyte molecular deposition film is more dependent on the speed than that of composite nanoparticle molecular deposition film. 展开更多
关键词 shear force molecular deposition film NANOPARTICLES
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部