The wear behavior of AZ91 alloy was investigated by considering different parameters,such as load(10−50 N),sliding speed(160−220 mm/s)and sliding distance(250−1000 m).It was found that wear volume loss increased as lo...The wear behavior of AZ91 alloy was investigated by considering different parameters,such as load(10−50 N),sliding speed(160−220 mm/s)and sliding distance(250−1000 m).It was found that wear volume loss increased as load increased for all sliding distances and some sliding speeds.For sliding speed of 220 mm/s and sliding distance of 1000 m,the wear volume losses under loads of 10,20,30,40 and 50 N were calculated to be 15.0,19.0,24.3,33.9 and 37.4 mm3,respectively.Worn surfaces show that abrasion and oxidation were present at a load of 10 N,which changes into delamination at a load of 50 N.ANOVA results show that the contributions of load,sliding distance and sliding speed were 12.99%,83.04%and 3.97%,respectively.The artificial neural networks(ANN),support vector regressor(SVR)and random forest(RF)methods were applied for the prediction of wear volume loss of AZ91 alloy.The correlation coefficient(R2)values of SVR,RF and ANN for the test were 0.9245,0.9800 and 0.9845,respectively.Thus,the ANN model has promising results for the prediction of wear performance of AZ91 alloy.展开更多
As a production quality index of hematite grinding process,particle size(PS)is hard to be measured in real time.To achieve the PS estimation,this paper proposes a novel data driven model of PS using stochastic configu...As a production quality index of hematite grinding process,particle size(PS)is hard to be measured in real time.To achieve the PS estimation,this paper proposes a novel data driven model of PS using stochastic configuration network(SCN)with robust technique,namely,robust SCN(RSCN).Firstly,this paper proves the universal approximation property of RSCN with weighted least squares technique.Secondly,three robust algorithms are presented by employing M-estimation with Huber loss function,M-estimation with interquartile range(IQR)and nonparametric kernel density estimation(NKDE)function respectively to set the penalty weight.Comparison experiments are first carried out based on the UCI standard data sets to verify the effectiveness of these methods,and then the data-driven PS model based on the robust algorithms are established and verified.Experimental results show that the RSCN has an excellent performance for the PS estimation.展开更多
Milling electrical discharge machining(EDM) enables the machining of complex cavities using cylindrical or tubular electrodes.To ensure acceptable machining accuracy the process requires some methods of compensating f...Milling electrical discharge machining(EDM) enables the machining of complex cavities using cylindrical or tubular electrodes.To ensure acceptable machining accuracy the process requires some methods of compensating for electrode wear.Due to the complexity and random nature of the process,existing methods of compensating for such wear usually involve off-line prediction.This paper discusses an innovative model of electrode wear prediction for milling EDM based upon a radial basis function(RBF) network.Data gained from an orthogonal experiment were used to provide training samples for the RBF network.The model established was used to forecast the electrode wear,making it possible to calculate the real-time tool wear in the milling EDM process and,to lay the foundations for dynamic compensation of the electrode wear on-line.This paper demonstrates that by using this model prediction errors can be controlled within 8%.展开更多
文摘The wear behavior of AZ91 alloy was investigated by considering different parameters,such as load(10−50 N),sliding speed(160−220 mm/s)and sliding distance(250−1000 m).It was found that wear volume loss increased as load increased for all sliding distances and some sliding speeds.For sliding speed of 220 mm/s and sliding distance of 1000 m,the wear volume losses under loads of 10,20,30,40 and 50 N were calculated to be 15.0,19.0,24.3,33.9 and 37.4 mm3,respectively.Worn surfaces show that abrasion and oxidation were present at a load of 10 N,which changes into delamination at a load of 50 N.ANOVA results show that the contributions of load,sliding distance and sliding speed were 12.99%,83.04%and 3.97%,respectively.The artificial neural networks(ANN),support vector regressor(SVR)and random forest(RF)methods were applied for the prediction of wear volume loss of AZ91 alloy.The correlation coefficient(R2)values of SVR,RF and ANN for the test were 0.9245,0.9800 and 0.9845,respectively.Thus,the ANN model has promising results for the prediction of wear performance of AZ91 alloy.
基金Projects(61603393,61741318)supported in part by the National Natural Science Foundation of ChinaProject(BK20160275)supported by the Natural Science Foundation of Jiangsu Province,China+1 种基金Project(2015M581885)supported by the Postdoctoral Science Foundation of ChinaProject(PAL-N201706)supported by the Open Project Foundation of State Key Laboratory of Synthetical Automation for Process Industries of Northeastern University,China
文摘As a production quality index of hematite grinding process,particle size(PS)is hard to be measured in real time.To achieve the PS estimation,this paper proposes a novel data driven model of PS using stochastic configuration network(SCN)with robust technique,namely,robust SCN(RSCN).Firstly,this paper proves the universal approximation property of RSCN with weighted least squares technique.Secondly,three robust algorithms are presented by employing M-estimation with Huber loss function,M-estimation with interquartile range(IQR)and nonparametric kernel density estimation(NKDE)function respectively to set the penalty weight.Comparison experiments are first carried out based on the UCI standard data sets to verify the effectiveness of these methods,and then the data-driven PS model based on the robust algorithms are established and verified.Experimental results show that the RSCN has an excellent performance for the PS estimation.
基金the National High Technology Research and Development Program (863) of China(No. 2007AA04Z345)the National Natural Science Foundation of China (No. 50679041)the Foundation of Heilongjiang Science and Technology Committee(No. GA06A501)
文摘Milling electrical discharge machining(EDM) enables the machining of complex cavities using cylindrical or tubular electrodes.To ensure acceptable machining accuracy the process requires some methods of compensating for electrode wear.Due to the complexity and random nature of the process,existing methods of compensating for such wear usually involve off-line prediction.This paper discusses an innovative model of electrode wear prediction for milling EDM based upon a radial basis function(RBF) network.Data gained from an orthogonal experiment were used to provide training samples for the RBF network.The model established was used to forecast the electrode wear,making it possible to calculate the real-time tool wear in the milling EDM process and,to lay the foundations for dynamic compensation of the electrode wear on-line.This paper demonstrates that by using this model prediction errors can be controlled within 8%.