期刊文献+
共找到11篇文章
< 1 >
每页显示 20 50 100
气缸套平台绗磨网纹的检测
1
作者 陈慧 《铸造工程》 2017年第6期42-47,共6页
介绍了目前的几种主要气缸套平台绗磨网纹的检测方法,对其进行了归纳和总结.结合实际情况提出了在目前条件下可以较为全面检测网纹的方法,并对未来利用三维测量手段进行气缸套的无损检测进行了展望.
关键词 气缸套 平台 磨网 检测
下载PDF
介绍一种捕捞池沼公鱼的有效网具——磨网 被引量:1
2
作者 李温林 《水利渔业》 1991年第2期32-33,36,共3页
磨网分布于河北省白洋淀和官厅水库一带,属地拉网类渔具,翼网较长,囊网较短小,双船作业,用锚固定船位,借助绞盘在船上人工曳网,形似人工推磨,故称磨网(也称磨磨网)。捕捞对象从前为餐条、腊鱼等小型鱼类。
关键词 捕鱼 磨网 池沼公鱼
下载PDF
磨网工艺
3
作者 杨为正 《网印工业》 2010年第11期5-6,共2页
在网版制作过程中,往往有"磨网"这一道工序,其目的是要使感光胶层与丝网粘结得更牢固,从而使网版更耐用。在实际网印中,常常会听到工人反映:
关键词 磨网 海棉 尼龙 感光胶
下载PDF
网印技术知多少(三)
4
作者 齐成 徐丽英 《网印工业》 2004年第1期24-25,共2页
紫外线冷光灯有什么优点? 答:在丝网印刷制版采用的灯源中,由于紫外线冷光灯采用电子整流器,因此发出的光强度不受电网电压高低的影响,只需130V电压就能启动.
关键词 晒版 紫外线 电磁波 线数 磨网 油墨 冷光灯 目数
下载PDF
建筑陶瓷印花制版材料及其选择 被引量:1
5
作者 张蒙 《佛山陶瓷》 1994年第4期30-34,共5页
近几年国内建陶行业发展极为迅速,而建陶产品中大量的地砖和釉面砖印花都是采用丝网印版,将图案直接印刷在陶瓷产品上的工艺方式。印花的质量和效果直接影响到产品的外观视觉效果和产品档次,而印花质量的关键就在于优良的网板。好的网版... 近几年国内建陶行业发展极为迅速,而建陶产品中大量的地砖和釉面砖印花都是采用丝网印版,将图案直接印刷在陶瓷产品上的工艺方式。印花的质量和效果直接影响到产品的外观视觉效果和产品档次,而印花质量的关键就在于优良的网板。好的网版,图案印刷精美,对原稿的再现力强,耐印力高,并最适合特定的印刷要求。 展开更多
关键词 建筑陶瓷 印花 制版材料 感光胶 脱脂剂 磨网
下载PDF
“沂蒙”牌缸套
6
作者 张在军 卢相青 彭士礼 《农业知识》 2001年第11期49-49,共1页
"沂蒙"牌缸套是山东气缸套股份有限公司生产的名牌产品,主要型号有75、80、85系列、492、95系列、100系列、102、105系列、6110、S1110、SD1110、6113、
关键词 缸套 名牌产品 激光淬火 磨网 使用寿命
下载PDF
五星红间接菲林
7
作者 黄同科 《网印工业》 2005年第2期43-47,共5页
关键词 药膜 菲林 涂布层 磨网 软片 底片 印刷 孔版印刷 油墨 点印刷 感光乳剂 照相材料
下载PDF
沙钢5000mm宽厚板轧机轧辊降耗的改进措施 被引量:1
8
作者 陆文国 《宽厚板》 2012年第1期42-44,共3页
介绍了沙钢5 000 mm宽厚板四辊轧机在轧辊降耗中采用的改进轧辊材质,合理轧辊磨削量,优化辊型与轧制计划编排等措施降低轧辊消耗,取得了良好的效果。
关键词 轧辊降耗 使用技术 纹修 支承辊倒角
下载PDF
Estimation of wear performance of AZ91 alloy under dry sliding conditions using machine learning methods 被引量:4
9
作者 Fatih AYDIN Rafet DURGUT 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2021年第1期125-137,共13页
The wear behavior of AZ91 alloy was investigated by considering different parameters,such as load(10−50 N),sliding speed(160−220 mm/s)and sliding distance(250−1000 m).It was found that wear volume loss increased as lo... The wear behavior of AZ91 alloy was investigated by considering different parameters,such as load(10−50 N),sliding speed(160−220 mm/s)and sliding distance(250−1000 m).It was found that wear volume loss increased as load increased for all sliding distances and some sliding speeds.For sliding speed of 220 mm/s and sliding distance of 1000 m,the wear volume losses under loads of 10,20,30,40 and 50 N were calculated to be 15.0,19.0,24.3,33.9 and 37.4 mm3,respectively.Worn surfaces show that abrasion and oxidation were present at a load of 10 N,which changes into delamination at a load of 50 N.ANOVA results show that the contributions of load,sliding distance and sliding speed were 12.99%,83.04%and 3.97%,respectively.The artificial neural networks(ANN),support vector regressor(SVR)and random forest(RF)methods were applied for the prediction of wear volume loss of AZ91 alloy.The correlation coefficient(R2)values of SVR,RF and ANN for the test were 0.9245,0.9800 and 0.9845,respectively.Thus,the ANN model has promising results for the prediction of wear performance of AZ91 alloy. 展开更多
关键词 AZ91 alloy wear performance artificial neural networks support vector regressor random forest method
下载PDF
Data driven particle size estimation of hematite grinding process using stochastic configuration network with robust technique 被引量:6
10
作者 DAI Wei LI De-peng +1 位作者 CHEN Qi-xin CHAI Tian-you 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第1期43-62,共20页
As a production quality index of hematite grinding process,particle size(PS)is hard to be measured in real time.To achieve the PS estimation,this paper proposes a novel data driven model of PS using stochastic configu... As a production quality index of hematite grinding process,particle size(PS)is hard to be measured in real time.To achieve the PS estimation,this paper proposes a novel data driven model of PS using stochastic configuration network(SCN)with robust technique,namely,robust SCN(RSCN).Firstly,this paper proves the universal approximation property of RSCN with weighted least squares technique.Secondly,three robust algorithms are presented by employing M-estimation with Huber loss function,M-estimation with interquartile range(IQR)and nonparametric kernel density estimation(NKDE)function respectively to set the penalty weight.Comparison experiments are first carried out based on the UCI standard data sets to verify the effectiveness of these methods,and then the data-driven PS model based on the robust algorithms are established and verified.Experimental results show that the RSCN has an excellent performance for the PS estimation. 展开更多
关键词 hematite grinding process particle size stochastic configuration network robust technique M-estimation nonparametric kernel density estimation
下载PDF
Electrode Wear Prediction in Milling Electrical Discharge Machining Based on Radial Basis Function Neural Network 被引量:2
11
作者 黄河 白基成 +1 位作者 卢泽生 郭永丰 《Journal of Shanghai Jiaotong university(Science)》 EI 2009年第6期736-741,共6页
Milling electrical discharge machining(EDM) enables the machining of complex cavities using cylindrical or tubular electrodes.To ensure acceptable machining accuracy the process requires some methods of compensating f... Milling electrical discharge machining(EDM) enables the machining of complex cavities using cylindrical or tubular electrodes.To ensure acceptable machining accuracy the process requires some methods of compensating for electrode wear.Due to the complexity and random nature of the process,existing methods of compensating for such wear usually involve off-line prediction.This paper discusses an innovative model of electrode wear prediction for milling EDM based upon a radial basis function(RBF) network.Data gained from an orthogonal experiment were used to provide training samples for the RBF network.The model established was used to forecast the electrode wear,making it possible to calculate the real-time tool wear in the milling EDM process and,to lay the foundations for dynamic compensation of the electrode wear on-line.This paper demonstrates that by using this model prediction errors can be controlled within 8%. 展开更多
关键词 milling electrical discharge machining (EDM) electrode wear prediction radial basis function (RBF) neural network
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部