The dark current of In_(0.47) Ga_(0.53) As/InP heterojunction photodiodes (HPDs) was analysed. We found that there exists a new dark current component──deep level-assisted tunnelling current.DLTS was used to measure...The dark current of In_(0.47) Ga_(0.53) As/InP heterojunction photodiodes (HPDs) was analysed. We found that there exists a new dark current component──deep level-assisted tunnelling current.DLTS was used to measure the In_(0.47)Ga_(0.53)As/InP HPDs. An electronic trap which has a thermal activation energy of O.44 eV, level concentration of 3.10×10 ̄(13)cm ̄(-3) and electronic capture cross section of 1.72×10 ̄(12)cm ̄2 has been found.It's existence results in the new tunnelling current.展开更多
InG sP/G s SCH SQW lasers have been prepared by LP-MOCVD. The dependence of t hreshold current density on cavity length was explained. Laser diodes are char acterized by the output power of 1 W to 2 W, threshold curre...InG sP/G s SCH SQW lasers have been prepared by LP-MOCVD. The dependence of t hreshold current density on cavity length was explained. Laser diodes are char acterized by the output power of 1 W to 2 W, threshold current density ( J th ) of 330 A/cm 2 to 450 A/cm 2 and external differe ntial quantum efficiency ( η d) of 35% to 75%, and these characteristics ar e in good agreement with the designed requirement.展开更多
The authors spent the search for new methods of synthesis possible of organometallic compounds of phosphorus, arsenic, antimony, bismuth. For modifications classical reactions the N (nitrogen) atoms have been replac...The authors spent the search for new methods of synthesis possible of organometallic compounds of phosphorus, arsenic, antimony, bismuth. For modifications classical reactions the N (nitrogen) atoms have been replaced on atoms of P (phosphorus), As (arsenic), Sb (antimony) and Bi (bismuth). The authors have proposed a new mechanism for the possible reactions.展开更多
The glycation of hemoglobin is catalyzed by buffer phosphate and arsenate. The catalytic constant (kB) for aqueous arsenate is two-fold larger than for aqueous phosphate. The catalytic constant (ks) of phosphate i...The glycation of hemoglobin is catalyzed by buffer phosphate and arsenate. The catalytic constant (kB) for aqueous arsenate is two-fold larger than for aqueous phosphate. The catalytic constant (ks) of phosphate in sorbitol mixtures increase from (1.67 ± 0.11) × 10-10 s-1·M-1 to (5.78 ± 0.39) × 10-10 s-1·M-1 and the catalytic constant is enhanced 3.5 times, relative to that in water; the catalytic constant (kB) of arsenate in sorbitol mixtures increase from (2.98±0.07)× 10-10 s-1·M-1 to (6.62 ± 0.53) × 10-10 s-1·M-1 and the catalytic constant is enhanced 2 times, relative to that in water. The spontaneous rate constants are independent of sorbitol concentration for phosphate and arsenate. The catalytic power of phosphate and arsenate in sorbitol are the same. Desolvation of strongly hydrated species such as HPO42 and HAsO42 should make a contribution to the energy cost of the formation of anion-hemoglobin complexes and can be a possible explanation for higher catalytic potential of HAsO42 in water. The same catalytic constant (ksB) for phosphate and arsenate in sorbitol indicates that the same catalyst base group on the hemoglobin molecule may be involved in the abstraction of proton in the Amadori rearrangement.展开更多
文摘The dark current of In_(0.47) Ga_(0.53) As/InP heterojunction photodiodes (HPDs) was analysed. We found that there exists a new dark current component──deep level-assisted tunnelling current.DLTS was used to measure the In_(0.47)Ga_(0.53)As/InP HPDs. An electronic trap which has a thermal activation energy of O.44 eV, level concentration of 3.10×10 ̄(13)cm ̄(-3) and electronic capture cross section of 1.72×10 ̄(12)cm ̄2 has been found.It's existence results in the new tunnelling current.
文摘InG sP/G s SCH SQW lasers have been prepared by LP-MOCVD. The dependence of t hreshold current density on cavity length was explained. Laser diodes are char acterized by the output power of 1 W to 2 W, threshold current density ( J th ) of 330 A/cm 2 to 450 A/cm 2 and external differe ntial quantum efficiency ( η d) of 35% to 75%, and these characteristics ar e in good agreement with the designed requirement.
文摘The authors spent the search for new methods of synthesis possible of organometallic compounds of phosphorus, arsenic, antimony, bismuth. For modifications classical reactions the N (nitrogen) atoms have been replaced on atoms of P (phosphorus), As (arsenic), Sb (antimony) and Bi (bismuth). The authors have proposed a new mechanism for the possible reactions.
文摘The glycation of hemoglobin is catalyzed by buffer phosphate and arsenate. The catalytic constant (kB) for aqueous arsenate is two-fold larger than for aqueous phosphate. The catalytic constant (ks) of phosphate in sorbitol mixtures increase from (1.67 ± 0.11) × 10-10 s-1·M-1 to (5.78 ± 0.39) × 10-10 s-1·M-1 and the catalytic constant is enhanced 3.5 times, relative to that in water; the catalytic constant (kB) of arsenate in sorbitol mixtures increase from (2.98±0.07)× 10-10 s-1·M-1 to (6.62 ± 0.53) × 10-10 s-1·M-1 and the catalytic constant is enhanced 2 times, relative to that in water. The spontaneous rate constants are independent of sorbitol concentration for phosphate and arsenate. The catalytic power of phosphate and arsenate in sorbitol are the same. Desolvation of strongly hydrated species such as HPO42 and HAsO42 should make a contribution to the energy cost of the formation of anion-hemoglobin complexes and can be a possible explanation for higher catalytic potential of HAsO42 in water. The same catalytic constant (ksB) for phosphate and arsenate in sorbitol indicates that the same catalyst base group on the hemoglobin molecule may be involved in the abstraction of proton in the Amadori rearrangement.