[Objective] This study aimed to investigate the phosphorus nutrition effi- ciency of different soybean genotypes at blooming stage under low phosphorus stress. [Method] By using four "low phosphorus efficiency" soyb...[Objective] This study aimed to investigate the phosphorus nutrition effi- ciency of different soybean genotypes at blooming stage under low phosphorus stress. [Method] By using four "low phosphorus efficiency" soybean genotypes (D03, D05, D17 and D18) and four "high phosphorus efficiency" soybean genotypes (D31, D34, D37 and D38) as experimental materials, soil culture experiment was conduct- ed with two treatments of high phosphorus (+P) and low phosphorus (-P), to analyze the relationship between phosphorus content, phosphorus uptake, phosphorus use efficiency and phosphorus efficiency of soybean genotypes with different phos- phorus efficiency. [Result] Under low phosphorus conditions, four soybean genotypes with high phosphorus efficiency showed significant advantage in phosphorus uptake at seedling stage, to be specific, D34 showed relatively high phosphorus absorption capacity but no advantage in adaptability of phosphorus use efficiency, while only D37 showed relatively high phosphorus absorption capacity and phosphorus use ca- pacity. Correlation analysis and path analysis showed that the level of phosphorus efficiency of soybean at blooming stage under (-P) and (+P) treatments was mainly determined by phosphorus absorption capacity, and that under (-P) treatment was significantly greater than (+P) treatment. Phosphorus uptake and phosphorus use ef- ficiency under (-P) and (+P) treatments both showed great direct effects on phos- phorus efficiency, and phosphorus uptake made greater contribution; however, the indirect effects were relatively low, Under low phosphorus stress, the mechanisms for various soybean genotypes with high phosphorus efficiency to adapt to low phospho- rus stress were different, and phosphorus absorption efficiency (phosphorus uptake) was the main variation source of the phosphorus efficiency of various soybean genotypes at blooming stage. [Conclusion] This study revealed the contribution made by phosphorus absorption efficiency and phosphorus use efficiency to phosphorus efficiency of soybean.展开更多
Field plot experiment was conducted to study the effects of two slow-re- lease fertilizers and balanced fertilization on dry matter accumulation, yield, fertilizer use efficiency, nitrogen, phosphorus and potassium up...Field plot experiment was conducted to study the effects of two slow-re- lease fertilizers and balanced fertilization on dry matter accumulation, yield, fertilizer use efficiency, nitrogen, phosphorus and potassium uptake of peppers at Jiangna Town, Yanshan County, Yunnan Province in 2011. The results showed that the dry matter accumulation in dried pepper plant, pepper yield, nitrogen, phosphorus, potassium uptake in peppers were significantly increased in all the fertilizer treat- ments, compared with those in control (no fertilizer). Compared with conventional fertilization, balanced fertilization, slow-release compound fertilizer and slow-release urea fertilizer significantly increased dried pepper economic output by 20.94%, 17.5% and 14.54%, nitrogen uptake in dried peppers by 21.53%,18.46% and 13.19%, phosphorus uptake in dried peppers by 14.08%, 15.76% and 10.44%, potassium uptake in dried peppers by 22.66%, 15.73% and 16.28%; they also in- creased nitrogen and potassium use efficiency, but reduced potassium use efficiency due to the increased potassium addition. In treatments with balanced fertilization, slow-release compound fertilizer and slow-release urea fertilizer, the nitrogen utiliza- tion was 5.84%, 7.14% and 8.33% higher and the phosphorus utilization was 3.32%, 3.27% and 2.47% higher than those in treatment with conventional fertiliza- tion. In addition, the nitrogen application could be reduced by 20%-50% by bal- anced fertilization and the two slow-release fertilizers, thereby reducing environmen- tal pollution. Slow-release fertilizers could also reduce the frequency of fertilization and labor costs.展开更多
To identify genetic factors underlying phosphorus (P) uptake and use efficiency under low_P stress in rice (Oryza sativa L.), 84 selected genotypes (recombinant inbred lines) and their parents (which differed in toler...To identify genetic factors underlying phosphorus (P) uptake and use efficiency under low_P stress in rice (Oryza sativa L.), 84 selected genotypes (recombinant inbred lines) and their parents (which differed in tolerance for low_P stress) “IR20” and IR55178_3B_9_3, were cultured in liquid medium supplemented with adequate and low P levels in a greenhouse. Plants were sampled after 6 weeks in culture for measurements of plant dry weight, P concentration, P uptake and P use efficiency under both P sufficient and stress conditions. A total of 179 molecular markers, including 26 RFLPs and 153 AFLPs, mapped on all 12 chromosomes of rice based on the 84 selected genotypes were used to detect the quantitative trait loci (QTLs) underlying tolerance for low_P stress. Three QTLs were detected on chromosomes 6, 7 and 12, respectively, for relative plant dry weight (RPDW) and relative P uptake (RPUP). One of the QTLs flanked by RG9 and RG241 on chromosome 12 had a major effect which explained about 50% of the variations in the two parameters across the population. The results coincided with the QTLs for low_P stress based on relative tillering ability from the same population from a cross between Nipponbare and Kasalath under soil condition. The identical major QTL for P uptake and plant growth under low_P stress in both liquid medium and soil strongly suggests that the ability of P uptake mainly controls rice tolerance for low_P stress.展开更多
A field microplot experiment was conducted in the red soil hilly region of South China to evaluate plant phosphorus (P)uptake under soybean and citrus monoculture and the soybean-citrus intercropping system using the ...A field microplot experiment was conducted in the red soil hilly region of South China to evaluate plant phosphorus (P)uptake under soybean and citrus monoculture and the soybean-citrus intercropping system using the 32P tracer technique.P fertilizer was applied at three depths(15,35,and 55 cm).The experimental results showed that the planting pattern and 32P application depth significantly affected the characteristics of P uptake by soybean and citrus.Under the soybean-citrus intercropping system,considerable competition was observed when the 32P fertilizer was applied to the topsoil(15 cm);therefore,the 32P recovery rate declined by 41.5%and 14.7%for soybean and citrus,and 32P supplying amount of topsoil to soybean and citrus decreased by 346.8 and 148.1 mg plot-1,respectively,compared to those under the monoculture.However,32P recovery of soybean was promoted when 32P fertilizer was applied to the deeper soil layers (35 and 55 cm)under soybean-citrus intercropping.Under the soybean monoculture,32P fertilizer could hardly be used by soybean when 32P fertilizer was applied at the 55 cm depth or below,with the recovery rate being less than 0.1%;it was up to 0.253%by soybean under intercropping.The higher P recovery of soybean under soybean-citrus intercropping when P was applied in the deeper soil layers was because part of the P nutrient that the citrus absorbed from the deeper soil layers could be released into the topsoil and then it could be used by the soybean.展开更多
Gracilaria asiatica, being highly efficient in nutrient absorption, is cultivated in sea cucumber ponds to remove nutrients such as nitrogen and phosphate. It was cultured in a laboratory simulating field conditions, ...Gracilaria asiatica, being highly efficient in nutrient absorption, is cultivated in sea cucumber ponds to remove nutrients such as nitrogen and phosphate. It was cultured in a laboratory simulating field conditions, and its nutrient absorption was measured to evaluate effects of environmental conditions. Ammonia nitrogen (AN), nitrate nitrogen (NN), total inorganic nitrogen (TIN), and soluble reactive phosphorus (SRP) uptake rate and removal efficiency were determined in a 4~2 factorial design experiment in water temperatures (T) at 15~C and 25~C, algae biomass (AB) at 0.5 g/L and 1.0 g/L, total inorganic nitrogen (TIN) at 30 ~tmol/L and 60 ~tmol/L, and soluble reactive phosphorus (SRP) at 3 and 6 ~tmol/L. AB and ambient TIN or SRP levels significantly affected uptake rate and removal efficiency of AN, NN, TIN, and SRP (P〈0.001). G. asiatica in AB of 0.5 g/L showed higher uptake rate and lower removal efficiency relative to that with AB of 1.0 g/L. Nitrogen and phosphorus uptake rate rose with increasing ambient nutrient concentrations; nutrient removal efficiency decreased at higher environmental nutrient concentrations. The algae preferred to absorb AN to NN. Uptake rates of AN, NN, and SRP were significantly affected by temperature (P〈0.001); uptake rate was higher for the 25~C group than for the 15~C group at the initial experiment stage. Only the removal efficiency of AN and SRP showed a significant difference between the two temperature groups (P〈0.01). The four factors had significant interactive effects on absorption of N and P, implying that G. asiatica has great bioremedial potential in sea cucumber culture ponds.展开更多
基金Supported by Doctoral Scientific Research Start-up Project of Mudanjiang Normal University(MSB200912)"12th Five-Year Plan" Educational Science and Research Project of Heilongjiang Association of Higher Education(HGJXHB1110053)Teaching Reform Project of Mudanjiang Normal University(10-XY01067)~~
文摘[Objective] This study aimed to investigate the phosphorus nutrition effi- ciency of different soybean genotypes at blooming stage under low phosphorus stress. [Method] By using four "low phosphorus efficiency" soybean genotypes (D03, D05, D17 and D18) and four "high phosphorus efficiency" soybean genotypes (D31, D34, D37 and D38) as experimental materials, soil culture experiment was conduct- ed with two treatments of high phosphorus (+P) and low phosphorus (-P), to analyze the relationship between phosphorus content, phosphorus uptake, phosphorus use efficiency and phosphorus efficiency of soybean genotypes with different phos- phorus efficiency. [Result] Under low phosphorus conditions, four soybean genotypes with high phosphorus efficiency showed significant advantage in phosphorus uptake at seedling stage, to be specific, D34 showed relatively high phosphorus absorption capacity but no advantage in adaptability of phosphorus use efficiency, while only D37 showed relatively high phosphorus absorption capacity and phosphorus use ca- pacity. Correlation analysis and path analysis showed that the level of phosphorus efficiency of soybean at blooming stage under (-P) and (+P) treatments was mainly determined by phosphorus absorption capacity, and that under (-P) treatment was significantly greater than (+P) treatment. Phosphorus uptake and phosphorus use ef- ficiency under (-P) and (+P) treatments both showed great direct effects on phos- phorus efficiency, and phosphorus uptake made greater contribution; however, the indirect effects were relatively low, Under low phosphorus stress, the mechanisms for various soybean genotypes with high phosphorus efficiency to adapt to low phospho- rus stress were different, and phosphorus absorption efficiency (phosphorus uptake) was the main variation source of the phosphorus efficiency of various soybean genotypes at blooming stage. [Conclusion] This study revealed the contribution made by phosphorus absorption efficiency and phosphorus use efficiency to phosphorus efficiency of soybean.
基金Supported by Special Fund from Ministry of Agriculture for Scientific Research(200903025-05)~~
文摘Field plot experiment was conducted to study the effects of two slow-re- lease fertilizers and balanced fertilization on dry matter accumulation, yield, fertilizer use efficiency, nitrogen, phosphorus and potassium uptake of peppers at Jiangna Town, Yanshan County, Yunnan Province in 2011. The results showed that the dry matter accumulation in dried pepper plant, pepper yield, nitrogen, phosphorus, potassium uptake in peppers were significantly increased in all the fertilizer treat- ments, compared with those in control (no fertilizer). Compared with conventional fertilization, balanced fertilization, slow-release compound fertilizer and slow-release urea fertilizer significantly increased dried pepper economic output by 20.94%, 17.5% and 14.54%, nitrogen uptake in dried peppers by 21.53%,18.46% and 13.19%, phosphorus uptake in dried peppers by 14.08%, 15.76% and 10.44%, potassium uptake in dried peppers by 22.66%, 15.73% and 16.28%; they also in- creased nitrogen and potassium use efficiency, but reduced potassium use efficiency due to the increased potassium addition. In treatments with balanced fertilization, slow-release compound fertilizer and slow-release urea fertilizer, the nitrogen utiliza- tion was 5.84%, 7.14% and 8.33% higher and the phosphorus utilization was 3.32%, 3.27% and 2.47% higher than those in treatment with conventional fertiliza- tion. In addition, the nitrogen application could be reduced by 20%-50% by bal- anced fertilization and the two slow-release fertilizers, thereby reducing environmen- tal pollution. Slow-release fertilizers could also reduce the frequency of fertilization and labor costs.
文摘To identify genetic factors underlying phosphorus (P) uptake and use efficiency under low_P stress in rice (Oryza sativa L.), 84 selected genotypes (recombinant inbred lines) and their parents (which differed in tolerance for low_P stress) “IR20” and IR55178_3B_9_3, were cultured in liquid medium supplemented with adequate and low P levels in a greenhouse. Plants were sampled after 6 weeks in culture for measurements of plant dry weight, P concentration, P uptake and P use efficiency under both P sufficient and stress conditions. A total of 179 molecular markers, including 26 RFLPs and 153 AFLPs, mapped on all 12 chromosomes of rice based on the 84 selected genotypes were used to detect the quantitative trait loci (QTLs) underlying tolerance for low_P stress. Three QTLs were detected on chromosomes 6, 7 and 12, respectively, for relative plant dry weight (RPDW) and relative P uptake (RPUP). One of the QTLs flanked by RG9 and RG241 on chromosome 12 had a major effect which explained about 50% of the variations in the two parameters across the population. The results coincided with the QTLs for low_P stress based on relative tillering ability from the same population from a cross between Nipponbare and Kasalath under soil condition. The identical major QTL for P uptake and plant growth under low_P stress in both liquid medium and soil strongly suggests that the ability of P uptake mainly controls rice tolerance for low_P stress.
基金Project supported by the Knowledge Innovation Program of the Chinese Academy of Sciences(No.KZCX2-407)the Knowledge Innovation Program of Hunan Agricultural University(No.04YJ10)
文摘A field microplot experiment was conducted in the red soil hilly region of South China to evaluate plant phosphorus (P)uptake under soybean and citrus monoculture and the soybean-citrus intercropping system using the 32P tracer technique.P fertilizer was applied at three depths(15,35,and 55 cm).The experimental results showed that the planting pattern and 32P application depth significantly affected the characteristics of P uptake by soybean and citrus.Under the soybean-citrus intercropping system,considerable competition was observed when the 32P fertilizer was applied to the topsoil(15 cm);therefore,the 32P recovery rate declined by 41.5%and 14.7%for soybean and citrus,and 32P supplying amount of topsoil to soybean and citrus decreased by 346.8 and 148.1 mg plot-1,respectively,compared to those under the monoculture.However,32P recovery of soybean was promoted when 32P fertilizer was applied to the deeper soil layers (35 and 55 cm)under soybean-citrus intercropping.Under the soybean monoculture,32P fertilizer could hardly be used by soybean when 32P fertilizer was applied at the 55 cm depth or below,with the recovery rate being less than 0.1%;it was up to 0.253%by soybean under intercropping.The higher P recovery of soybean under soybean-citrus intercropping when P was applied in the deeper soil layers was because part of the P nutrient that the citrus absorbed from the deeper soil layers could be released into the topsoil and then it could be used by the soybean.
基金Supported by the Science and Technology Project of Tackling Key Problems in Shandong Province(No.2010GHY10505)the National Natural Science Foundation of China(No.31172426)
文摘Gracilaria asiatica, being highly efficient in nutrient absorption, is cultivated in sea cucumber ponds to remove nutrients such as nitrogen and phosphate. It was cultured in a laboratory simulating field conditions, and its nutrient absorption was measured to evaluate effects of environmental conditions. Ammonia nitrogen (AN), nitrate nitrogen (NN), total inorganic nitrogen (TIN), and soluble reactive phosphorus (SRP) uptake rate and removal efficiency were determined in a 4~2 factorial design experiment in water temperatures (T) at 15~C and 25~C, algae biomass (AB) at 0.5 g/L and 1.0 g/L, total inorganic nitrogen (TIN) at 30 ~tmol/L and 60 ~tmol/L, and soluble reactive phosphorus (SRP) at 3 and 6 ~tmol/L. AB and ambient TIN or SRP levels significantly affected uptake rate and removal efficiency of AN, NN, TIN, and SRP (P〈0.001). G. asiatica in AB of 0.5 g/L showed higher uptake rate and lower removal efficiency relative to that with AB of 1.0 g/L. Nitrogen and phosphorus uptake rate rose with increasing ambient nutrient concentrations; nutrient removal efficiency decreased at higher environmental nutrient concentrations. The algae preferred to absorb AN to NN. Uptake rates of AN, NN, and SRP were significantly affected by temperature (P〈0.001); uptake rate was higher for the 25~C group than for the 15~C group at the initial experiment stage. Only the removal efficiency of AN and SRP showed a significant difference between the two temperature groups (P〈0.01). The four factors had significant interactive effects on absorption of N and P, implying that G. asiatica has great bioremedial potential in sea cucumber culture ponds.