Cobalt-based phosphate/phosphonates are a class of promising water oxidation catalysts at neutralpH.Herein,we reported a facile hydrothermal synthesis of various nanostructured cobalt phe-nylphosphonates.It is found t...Cobalt-based phosphate/phosphonates are a class of promising water oxidation catalysts at neutralpH.Herein,we reported a facile hydrothermal synthesis of various nanostructured cobalt phe-nylphosphonates.It is found that the number of hydroxyl group of structure-directing reagent iscrucial for the construction of 3D hierarchical structures including hierarchical nanosheet flow-er-like assemblies and nanothorn microsphere.These samples were characterized by scanningelectron microscopy,transmission electron microscopy,X-ray diffraction,infrared,and X-ray pho-toelectron spectroscopy techniques.They can act as highly efficient electrocatalysts for the oxygenevolution reaction at neutral pH.Among these,hierarchical cobalt phenylphosphonate nanothornflowers present excellent performance,affording a current density of 1 mA cm^-2 required a smalloverpotential of 393 mV.This work offers a new clue to develop high-performance metal phospho-nate/phosphate catalysts toward electrochemical water oxidation.展开更多
文摘Cobalt-based phosphate/phosphonates are a class of promising water oxidation catalysts at neutralpH.Herein,we reported a facile hydrothermal synthesis of various nanostructured cobalt phe-nylphosphonates.It is found that the number of hydroxyl group of structure-directing reagent iscrucial for the construction of 3D hierarchical structures including hierarchical nanosheet flow-er-like assemblies and nanothorn microsphere.These samples were characterized by scanningelectron microscopy,transmission electron microscopy,X-ray diffraction,infrared,and X-ray pho-toelectron spectroscopy techniques.They can act as highly efficient electrocatalysts for the oxygenevolution reaction at neutral pH.Among these,hierarchical cobalt phenylphosphonate nanothornflowers present excellent performance,affording a current density of 1 mA cm^-2 required a smalloverpotential of 393 mV.This work offers a new clue to develop high-performance metal phospho-nate/phosphate catalysts toward electrochemical water oxidation.