采用常规射频等离子体增强化学气相沉积方法,以高氢稀释的Si H4为源气体和以PH3为掺杂剂,制备了磷掺杂的氢化纳米晶硅薄膜。结果表明,薄膜的生长速率随PH3/Si H4流量比(Cp)增加而显著减小。Raman谱的研究证实,随Cp增加,薄膜的晶化率...采用常规射频等离子体增强化学气相沉积方法,以高氢稀释的Si H4为源气体和以PH3为掺杂剂,制备了磷掺杂的氢化纳米晶硅薄膜。结果表明,薄膜的生长速率随PH3/Si H4流量比(Cp)增加而显著减小。Raman谱的研究证实,随Cp增加,薄膜的晶化率经历了先增大后减小的过程,当Cp=1.0%,晶化率达到最大值45.9%。傅里叶变换红外吸收谱测量结果显示,薄膜中的H含量在Cp=2.0%时达到最低值9.5%。光学测量结果表明,本征和掺P的氢化纳米晶硅薄膜在可见光谱范围呈现出良好的光吸收特性,在0.8~3.0 e V范围内,nc-Si(P)∶H薄膜的吸收系数显著大于c-Si。和α-Si∶H薄膜相比,虽然短波范围的吸收系数较低,但是在hν〈1.7 e V区域,nc-Si(P)∶H薄膜的吸收系数要高两到三个量级,显示出优良的红光响应。电学测量表明,适当掺P会显著提高氢化纳米晶硅薄膜的暗电导率,当Cp=0.5%时,薄膜的暗电导率可达5.4 S·cm-1。展开更多
OBJECTIVE To investigate the damage effect and mechanisms of cyclophosphamide(CTX)and its active metabolite derivative 4-hydroperoxycyclophosphamide(4-HC)to human neuroblas⁃toma SH-SY5Y cells.METHODS SH-SY5Y cells wer...OBJECTIVE To investigate the damage effect and mechanisms of cyclophosphamide(CTX)and its active metabolite derivative 4-hydroperoxycyclophosphamide(4-HC)to human neuroblas⁃toma SH-SY5Y cells.METHODS SH-SY5Y cells were treated with CTX[0(cell control),0.01,0.1,1,5,10,20,40 and 80 mmol·L^(-1)]and 4-HC[0(cell control),0.01,0.1,1,5,10,20,40 and 80μmol·L^(-1)]for 48 h.Cell confluence and morphology were observed by the IncuCyte ZOOM system.Cell viability was assessed by CCK-8 assay.Lactate dehydrogenase(LDH)release was measured by LDH assay kit.SH-SY5Y cells were treated with CTX(0,1,5,10 and 20 mmol·L^(-1))and 4-HC(0,1,5,10 and 20μmol·L^(-1))for 48 h before cell proliferation was analyzed by 5-ethynyl-2′-deoxyuridine(EdU)staining assay.Immunofluorescence was employed to assess the levels of the DNA double-strand break markerγ-H2AX and to evaluate changes in mitochondrial membrane potential.SH-SY5Y cells were treated with CTX(0,1,5 and 10 mmol·L^(-1))and 4-HC(0,1,5 and 10μmol·L^(-1))for 48 h,and the alterations in glycolysis and oxidative phosphorylation levels were analyzed using the Seahorse XFe96 Analyzer.RESULTS Compared with the cell control group,cell confluence and cell viability were significantly reduced in the CTX and 4-HC groups(P<0.01),and the half-maximal inhibitory concentrations(IC50)for CTX and 4-HC were 4.44 mmol·L^(-1) and 4.78μmol·L^(-1),respectively.The release rate of LDH was signif⁃icantly increased while the percentage of EdU+cells was significantly reduced in the CTX and 4-HC groups(P<0.01).The percentage ofγ-H2AX+cells was significantly increased and mitochondrial membrane potential significantly decreased in the CTX and 4-HC group(P<0.05).Treatment with CTX and 4-HC resulted in reduced levels of maximum glycolytic capacity,glycolytic reserve,maximal respi⁃ration,and ATP production(P<0.05).CONCLUSION CTX and 4-HC exert significant cytotoxic effects on SH-SY5Y cells by disrupting cell membrane structure,impeding cell proliferation,and reducing cell viability.The mechanisms underlying these effects may involve intracellular DNA damage,disturbance of energy metabolism and mitochondrial dysfunction.展开更多
[Objective] The aim of this study was to perform genome-wide analysis of glucose-6-phosphate dehydrogenase(G6PDH) and reveal its evolution in Eucalyptus grandsis.[Method] The gene character,protein sequence and phyl...[Objective] The aim of this study was to perform genome-wide analysis of glucose-6-phosphate dehydrogenase(G6PDH) and reveal its evolution in Eucalyptus grandsis.[Method] The gene character,protein sequence and phylogenetic tree of G6PDH gene were analyzed by BLAST and other bioinformatics software within Eucalyptus grandsis whole genome database.[Result] Six G6PDH genes,including one cytomic type and five plastids,were detected in the E.grandsis genome.All the G6PDHs have conserved motifs of motif 1,motif 2,motif 3,motif 7,motif 9 and motif 11.Furthermore,promoter sequences of all E.grandsis G6PDH contain TATA box,enhancer,light-responsive,hormone-responsive and stress-responsive regulatory elements.[Conclusion] This study provided reference for the further revealing molecular function of E.grandsis G6PDH gene family展开更多
A combination of X-ray powder diffraction, thermogravimetric analysis, diffuse reflection infrared Fourier transform, and ^31p magic-angle spinning nuclear magnetic resonance techniques with density function computati...A combination of X-ray powder diffraction, thermogravimetric analysis, diffuse reflection infrared Fourier transform, and ^31p magic-angle spinning nuclear magnetic resonance techniques with density function computation was used to elucidate the products and mecha- nism of the reactions among silica, H3PO4, and NaH2PO4 during the preparation of silica supported H3PO4 and NaH2PO4 catalysts. The spectral test results indicate that besides polyphosphoric acid, silicon phosphates on silica supported H3PO4 are also formed. On silica supported NaH2PO4 only sodium polyphosphates are present. Density functional theory (DFT) simulations indicate that in the initial stage, reaction of H3PO4 with silanol groups on the silica support is more favorable than that between H3PO4 itself. In contrast, dimerization and trimerization of NaH2PO4 are predicted to be the predominant initial reactions for the silica supported NaH2PO4 catalyst.展开更多
Expression vector p301-bG1 contains a Sw gene and a bialaphos resistance gene both driven by glyceraldehydes-3-phosphate dehydrogenase (GPD) gene promoter isolated from Lentinus edodes ( Berk.) Sing. Using p301-bG1, P...Expression vector p301-bG1 contains a Sw gene and a bialaphos resistance gene both driven by glyceraldehydes-3-phosphate dehydrogenase (GPD) gene promoter isolated from Lentinus edodes ( Berk.) Sing. Using p301-bG1, PEG-mediated transformation of protoplast of L. edodes was studied. Mixed with PEG-purified plasmid DNA, the protoplasts of L. edodes were treated with PEG solution and cultured on CYM regeneration plate containing 40 mug/mL bialaphos. Bialaphos-resistant and GUS-positive transformants were obtained using this transformation system. Although the transformation efficiency was relatively low, the protocols release large expenses on expensive instrument and restriction enzymes, providing a simple and economical method for mushroom breeding at the molecular level.展开更多
[Objective] This study aimed to investigate the killing effect of mixed fumi- gation of phosphine and carbon dioxide on eggs of Lasioderma serricorne F. [Method] The outside-storage phosphine generator was placed in a...[Objective] This study aimed to investigate the killing effect of mixed fumi- gation of phosphine and carbon dioxide on eggs of Lasioderma serricorne F. [Method] The outside-storage phosphine generator was placed in a tabernacled smoke box, and the mortality rates of L. serricome F. eggs in the smoke box under conditions of different aluminium phosphide usage amount and different fumigation time were studied. In addition, the times needed by tabernacle and smoke box cen- ter to reach the phosphine concentration peak were recorded. [Result] The optimum conditions for killing the eggs of L. serricorne were as follows: temperature of (27± 2) ℃, relatively humidity of (45±5)%, aluminium phosphide usage amount of 1.5 g/m3 and effective exposure time of 96 h. The killing effect of mixed fumigation of phos- phine and carbon dioxide was increased with the extension of fumigation time. The increased usage amount of aluminium phosphide showed no significant effect on killing effect. The tabernacle space and smoke box center all required relatively short time to reach the phosphine concentration peak. If the tabernacle had a good airtightness, the overall fumigation time could be shortened. [Conclusion] The fumi- gation method is reliable, and it can be used for the control of L. serricorne F. in tobacco storage.展开更多
In order to investigate the effect of nickel phosphide nanoparticles’ (Ni-P NPs) crystallization on hydrogen evolution reaction (HER) catalytic performance, amorphous Ni-P NPs and crystalline Ni12P5 were synt...In order to investigate the effect of nickel phosphide nanoparticles’ (Ni-P NPs) crystallization on hydrogen evolution reaction (HER) catalytic performance, amorphous Ni-P NPs and crystalline Ni12P5 were synthesized by a simple and low-cost autocatalytic reduction method and heat treatment process. The result of electrochemical tests shows that crystalline Ni12P5 has much higher HER catalytic activity than the amorphous one. X-ray diffraction, transmission electron microscopy and X-ray photoelectron spectroscopy revealed that Ni?P bond formed during crystallization, making Ni positively charged and P negatively charged. This charged nature of Ni12P5 is similar to [NiFe] hydrogenase and its analogous, which make the removal of H2 less energy-cost.展开更多
[Objective] This study aimed to investigate the effects of phosphine on germination and physiological characteristics of rice seeds. [Method] Simulation envi- ronments were conducted to study the effects of high-level...[Objective] This study aimed to investigate the effects of phosphine on germination and physiological characteristics of rice seeds. [Method] Simulation envi- ronments were conducted to study the effects of high-level phosphine on germination status and physiological characteristics of rice seeds and explore the early environ- mental and ecological effects of phosphine on rice growth in phosphorus cycle of paddy field. [Result] Experimental results showed that the increase of phosphine con- centration in the environment resulted in the decrease of germination rate and ger- mination potential by 11.11% and 19.71%, respectively. In addition, the activities of catalase (CAT) and peroxidase (POD) were reduced to 94.35% and 92.61%, respec- tively; the content of malondialdehyde (MDA) was maximally increased by 29.11%, indicating that both germination potential and growth condition of rice seeds were in- hibited under conditions of high-level phosphine. [Conclusion] This study provided theoretical basis for investigating the effects of phosphine on germination of rice seeds under natural environment.展开更多
Ordered macroporous materials with rapid mass transport and enhanced active site accessibility are essential for achieving improved catalytic activity.In this study,boron phosphate crystals with a three-dimensionally ...Ordered macroporous materials with rapid mass transport and enhanced active site accessibility are essential for achieving improved catalytic activity.In this study,boron phosphate crystals with a three-dimensionally interconnected ordered macroporous structure and a robust framework were fabricated and used as stable and selective catalysts in the oxidative dehydrogenation(ODH)of propane.Due to the improved mass diffusion and higher number of exposed active sites in the ordered macroporous structure,the catalyst exhibited a remarkable olefin productivity of^16 golefin gcat^-1 h^-1,which is up to 2–100 times higher than that of ODH catalysts reported to date.The selectivity for olefins was 91.5%(propene:82.5%,ethene:9.0%)at 515℃,with a propane conversion of 14.3%.At the same time,the selectivity for the unwanted deep-oxidized CO2 product remained less than 1.0%.The tri-coordinated surface boron species were identified as the active catalytic sites for the ODH of propane.This study provides a route for preparing a new type of metal-free catalyst with stable structure against oxidation and remarkable catalytic activity,which may represent a potential candidate to promote the industrialization of the ODH process.展开更多
Photocatalytic H2evolution under visible light irradiation is an ideal process for solving energy shortage.The low cost of photocatalysts and high efficiency of hydrogen evolution are the two key factors to realize th...Photocatalytic H2evolution under visible light irradiation is an ideal process for solving energy shortage.The low cost of photocatalysts and high efficiency of hydrogen evolution are the two key factors to realize the industrialization of the process.The substitution of a noble‐metal cocatalyst with a non‐noble‐metal catalyst can significantly reduce the cost of the photocatalyst.The largescale synthesis and assembly of semiconductors and non‐noble‐metal cocatalysts to form photocatalysts through a simple method can further decrease the cost of photocatalysis.Here,we report a large‐scale and low‐cost coprecipitation method to form phosphide/CdS photocatalysts to realize photocatalytic H2evolution.CoP and MoP cocatalysts significantly enhanced the photocatalytic production of hydrogen.The optimal H2production rates on CoP/CdS and MoP/CdS were140and78μmol/h,which were7.0and4.0times higher than those obtained with bare CdS,respectively,and2.0times and1.1times higher than those obtained with1.0%Pt/CdS,respectively.This work provides a practical method for the large‐scale preparation of low‐cost photocatalysts.展开更多
Among the sustainable energy sources,hydrogen is the one most promising for alleviating the pollution issues related to the usage of conventional fuels,as it can be produced in an efficient and eco-friendly way via el...Among the sustainable energy sources,hydrogen is the one most promising for alleviating the pollution issues related to the usage of conventional fuels,as it can be produced in an efficient and eco-friendly way via electrocatalytic water splitting.The hydrogen evolution reaction(HER,a half-reaction of water splitting)plays a pivotal role in decreasing the price and increasing the catalytic efficiency of hydrogen production and is efficiently promoted by metal phosphides in different electrolytes.Herein,we summarize the recent advances in the development of metal phosphides as HER electrocatalysts,focus on their synthesis(post-treatment,in situ generation,and electrodeposition methods)and the enhancement of their electrocatalytic activity(via elemental doping,interface and vacancy engineering,construction of specific supports and nanostructures,and the design of bior polymetallic phosphides),and highlight the crucial issues and challenges of future development.展开更多
The reaction kinetics for the leaching of low-grade scheelite concentrate was investigated in an autoclave with sodium hydroxide in the presence of phosphate. The effects of stirring speed (300-600 r/min), reaction te...The reaction kinetics for the leaching of low-grade scheelite concentrate was investigated in an autoclave with sodium hydroxide in the presence of phosphate. The effects of stirring speed (300-600 r/min), reaction temperature (353-383 K), sodium hydroxide concentration (1.69-6.76 mol/L) and phosphate concentration (0.68-1.69 mol/L) on the WO3 dissolution ratio were studied. The results showed that the WO3 dissolution ratio was practically independent of stirring speed, while it increased with increasing the reaction temperature, and the concentrations of sodium hydroxide and phosphate. The experimental data were consistent with the shrinking core model, with a surface chemical reaction as the leaching rate-determining step. The apparent activation energy was calculated as 49.56 kJ/mol, and the reaction orders with respect to the concentrations of sodium hydroxide and phosphate were determined as 0.27 and 0.67, respectively. The kinetics equation of the leaching process was established.展开更多
Activities of selected soil enzymes (invertase, acid phosphatase, proteinase,catalase, peroxidase and polyphenoloxi-dase) were determined under different spruce forests withrestoration histories of 5, 13, 18, 23, 27 y...Activities of selected soil enzymes (invertase, acid phosphatase, proteinase,catalase, peroxidase and polyphenoloxi-dase) were determined under different spruce forests withrestoration histories of 5, 13, 18, 23, 27 years and an old growth forest over 400 years old in theeastern Qinghai-Tibetan Plateau, China, and their possible use as indicators of ecosystems healthwere analyzed. Plots 10 X 10 m with 4 replications were established to investigate three hypotheses:soil enzyme activities a) would increase with the restoration process; b) would be greater insurface soils than at lower depths; and c) would be correlated to selected physicochemicalproperties. Results showed that as the forests developed after restoration, invertase and peroxidaseactivities usually increased up to the 23 year point. Also soil enzyme activities were associatedwith surface soils and decreased with depths, suggesting that in earlier restoration stages surfaceaddition of organic fertilizer to soils might be more effective than additions at depth. In the 0-20cm soil, there were significant correlations (P < 0.01 or < 0.05) between some soil enzymeactivities and some selected chemical properties. Therefore, temporal changes in enzyme activitiesshould be included as an indicator when evaluating sustainable forest management practices.展开更多
An experiment was conducted to examine the role of Mn in P fixation through comparing with Al and Fe. Hydroxides and oxides of Al, Fe and Mn were prepared in lab under opened and closed conditions to react with phosph...An experiment was conducted to examine the role of Mn in P fixation through comparing with Al and Fe. Hydroxides and oxides of Al, Fe and Mn were prepared in lab under opened and closed conditions to react with phosphate. The newly formed Mn hydroxide showed the strongest P-fixing abilityl even several times higher than Fe hydroxide, but became the lowest rapidly due to ageing when exposed to air. Mn oxide showed the lowest p-fixing ability. Therefore, a sound consideration on P fixation should be based on both quantities and p-fixing abilities of the compounds of Fe, Al and Mn. The importance of Mn on P availability should receive more attention especially under oxidation-reduction dynamic conditions.展开更多
In liquid-liquid solvent extraction processes, diluents have a strong influence on the extraction mechanism and efficiency. In this study, benzene, cyclohexane, trichloromethane, carbon tetrachloride, methyl isobutyl ...In liquid-liquid solvent extraction processes, diluents have a strong influence on the extraction mechanism and efficiency. In this study, benzene, cyclohexane, trichloromethane, carbon tetrachloride, methyl isobutyl ketone (MIBK), butyl acetate, and 1-octanol were used as diluents in the extraction of oxalic acid by trialkylphos-phine oxide (TRPO). The effects of extractant concentration, initial concentration of oxalic acid and diluent type on the extraction equilibrium partition coefficient are analyzed. The sequence of the extraction ability by different diluents is MIBK > butyl acetate > cyclohexane=benzene > carbon tetrachloride > 1-octanol > trichloromethane. Extraction mechanism was analyzed and extraction model parameters were evaluated.展开更多
文摘采用常规射频等离子体增强化学气相沉积方法,以高氢稀释的Si H4为源气体和以PH3为掺杂剂,制备了磷掺杂的氢化纳米晶硅薄膜。结果表明,薄膜的生长速率随PH3/Si H4流量比(Cp)增加而显著减小。Raman谱的研究证实,随Cp增加,薄膜的晶化率经历了先增大后减小的过程,当Cp=1.0%,晶化率达到最大值45.9%。傅里叶变换红外吸收谱测量结果显示,薄膜中的H含量在Cp=2.0%时达到最低值9.5%。光学测量结果表明,本征和掺P的氢化纳米晶硅薄膜在可见光谱范围呈现出良好的光吸收特性,在0.8~3.0 e V范围内,nc-Si(P)∶H薄膜的吸收系数显著大于c-Si。和α-Si∶H薄膜相比,虽然短波范围的吸收系数较低,但是在hν〈1.7 e V区域,nc-Si(P)∶H薄膜的吸收系数要高两到三个量级,显示出优良的红光响应。电学测量表明,适当掺P会显著提高氢化纳米晶硅薄膜的暗电导率,当Cp=0.5%时,薄膜的暗电导率可达5.4 S·cm-1。
文摘OBJECTIVE To investigate the damage effect and mechanisms of cyclophosphamide(CTX)and its active metabolite derivative 4-hydroperoxycyclophosphamide(4-HC)to human neuroblas⁃toma SH-SY5Y cells.METHODS SH-SY5Y cells were treated with CTX[0(cell control),0.01,0.1,1,5,10,20,40 and 80 mmol·L^(-1)]and 4-HC[0(cell control),0.01,0.1,1,5,10,20,40 and 80μmol·L^(-1)]for 48 h.Cell confluence and morphology were observed by the IncuCyte ZOOM system.Cell viability was assessed by CCK-8 assay.Lactate dehydrogenase(LDH)release was measured by LDH assay kit.SH-SY5Y cells were treated with CTX(0,1,5,10 and 20 mmol·L^(-1))and 4-HC(0,1,5,10 and 20μmol·L^(-1))for 48 h before cell proliferation was analyzed by 5-ethynyl-2′-deoxyuridine(EdU)staining assay.Immunofluorescence was employed to assess the levels of the DNA double-strand break markerγ-H2AX and to evaluate changes in mitochondrial membrane potential.SH-SY5Y cells were treated with CTX(0,1,5 and 10 mmol·L^(-1))and 4-HC(0,1,5 and 10μmol·L^(-1))for 48 h,and the alterations in glycolysis and oxidative phosphorylation levels were analyzed using the Seahorse XFe96 Analyzer.RESULTS Compared with the cell control group,cell confluence and cell viability were significantly reduced in the CTX and 4-HC groups(P<0.01),and the half-maximal inhibitory concentrations(IC50)for CTX and 4-HC were 4.44 mmol·L^(-1) and 4.78μmol·L^(-1),respectively.The release rate of LDH was signif⁃icantly increased while the percentage of EdU+cells was significantly reduced in the CTX and 4-HC groups(P<0.01).The percentage ofγ-H2AX+cells was significantly increased and mitochondrial membrane potential significantly decreased in the CTX and 4-HC group(P<0.05).Treatment with CTX and 4-HC resulted in reduced levels of maximum glycolytic capacity,glycolytic reserve,maximal respi⁃ration,and ATP production(P<0.05).CONCLUSION CTX and 4-HC exert significant cytotoxic effects on SH-SY5Y cells by disrupting cell membrane structure,impeding cell proliferation,and reducing cell viability.The mechanisms underlying these effects may involve intracellular DNA damage,disturbance of energy metabolism and mitochondrial dysfunction.
基金Supported by Seeding Raising Project from Guangdong Provincial Department(LYM10040)Open Research Project of Key Laboratory for Genetics and Breeding in Forest Trees and Ornamental Plants,MOE,Beijing Forestry University(FOP2010-4)~~
文摘[Objective] The aim of this study was to perform genome-wide analysis of glucose-6-phosphate dehydrogenase(G6PDH) and reveal its evolution in Eucalyptus grandsis.[Method] The gene character,protein sequence and phylogenetic tree of G6PDH gene were analyzed by BLAST and other bioinformatics software within Eucalyptus grandsis whole genome database.[Result] Six G6PDH genes,including one cytomic type and five plastids,were detected in the E.grandsis genome.All the G6PDHs have conserved motifs of motif 1,motif 2,motif 3,motif 7,motif 9 and motif 11.Furthermore,promoter sequences of all E.grandsis G6PDH contain TATA box,enhancer,light-responsive,hormone-responsive and stress-responsive regulatory elements.[Conclusion] This study provided reference for the further revealing molecular function of E.grandsis G6PDH gene family
文摘A combination of X-ray powder diffraction, thermogravimetric analysis, diffuse reflection infrared Fourier transform, and ^31p magic-angle spinning nuclear magnetic resonance techniques with density function computation was used to elucidate the products and mecha- nism of the reactions among silica, H3PO4, and NaH2PO4 during the preparation of silica supported H3PO4 and NaH2PO4 catalysts. The spectral test results indicate that besides polyphosphoric acid, silicon phosphates on silica supported H3PO4 are also formed. On silica supported NaH2PO4 only sodium polyphosphates are present. Density functional theory (DFT) simulations indicate that in the initial stage, reaction of H3PO4 with silanol groups on the silica support is more favorable than that between H3PO4 itself. In contrast, dimerization and trimerization of NaH2PO4 are predicted to be the predominant initial reactions for the silica supported NaH2PO4 catalyst.
文摘Expression vector p301-bG1 contains a Sw gene and a bialaphos resistance gene both driven by glyceraldehydes-3-phosphate dehydrogenase (GPD) gene promoter isolated from Lentinus edodes ( Berk.) Sing. Using p301-bG1, PEG-mediated transformation of protoplast of L. edodes was studied. Mixed with PEG-purified plasmid DNA, the protoplasts of L. edodes were treated with PEG solution and cultured on CYM regeneration plate containing 40 mug/mL bialaphos. Bialaphos-resistant and GUS-positive transformants were obtained using this transformation system. Although the transformation efficiency was relatively low, the protocols release large expenses on expensive instrument and restriction enzymes, providing a simple and economical method for mushroom breeding at the molecular level.
文摘[Objective] This study aimed to investigate the killing effect of mixed fumi- gation of phosphine and carbon dioxide on eggs of Lasioderma serricorne F. [Method] The outside-storage phosphine generator was placed in a tabernacled smoke box, and the mortality rates of L. serricome F. eggs in the smoke box under conditions of different aluminium phosphide usage amount and different fumigation time were studied. In addition, the times needed by tabernacle and smoke box cen- ter to reach the phosphine concentration peak were recorded. [Result] The optimum conditions for killing the eggs of L. serricorne were as follows: temperature of (27± 2) ℃, relatively humidity of (45±5)%, aluminium phosphide usage amount of 1.5 g/m3 and effective exposure time of 96 h. The killing effect of mixed fumigation of phos- phine and carbon dioxide was increased with the extension of fumigation time. The increased usage amount of aluminium phosphide showed no significant effect on killing effect. The tabernacle space and smoke box center all required relatively short time to reach the phosphine concentration peak. If the tabernacle had a good airtightness, the overall fumigation time could be shortened. [Conclusion] The fumi- gation method is reliable, and it can be used for the control of L. serricorne F. in tobacco storage.
基金Project(51125016)supported by the National Science Fund for Distinguished Young Scholars,ChinaProjects(51371119,51571151)supported by the National Natural Science Foundation of China
文摘In order to investigate the effect of nickel phosphide nanoparticles’ (Ni-P NPs) crystallization on hydrogen evolution reaction (HER) catalytic performance, amorphous Ni-P NPs and crystalline Ni12P5 were synthesized by a simple and low-cost autocatalytic reduction method and heat treatment process. The result of electrochemical tests shows that crystalline Ni12P5 has much higher HER catalytic activity than the amorphous one. X-ray diffraction, transmission electron microscopy and X-ray photoelectron spectroscopy revealed that Ni?P bond formed during crystallization, making Ni positively charged and P negatively charged. This charged nature of Ni12P5 is similar to [NiFe] hydrogenase and its analogous, which make the removal of H2 less energy-cost.
基金Supported by National Natural Science Foundation of China(41071305)~~
文摘[Objective] This study aimed to investigate the effects of phosphine on germination and physiological characteristics of rice seeds. [Method] Simulation envi- ronments were conducted to study the effects of high-level phosphine on germination status and physiological characteristics of rice seeds and explore the early environ- mental and ecological effects of phosphine on rice growth in phosphorus cycle of paddy field. [Result] Experimental results showed that the increase of phosphine con- centration in the environment resulted in the decrease of germination rate and ger- mination potential by 11.11% and 19.71%, respectively. In addition, the activities of catalase (CAT) and peroxidase (POD) were reduced to 94.35% and 92.61%, respec- tively; the content of malondialdehyde (MDA) was maximally increased by 29.11%, indicating that both germination potential and growth condition of rice seeds were in- hibited under conditions of high-level phosphine. [Conclusion] This study provided theoretical basis for investigating the effects of phosphine on germination of rice seeds under natural environment.
文摘Ordered macroporous materials with rapid mass transport and enhanced active site accessibility are essential for achieving improved catalytic activity.In this study,boron phosphate crystals with a three-dimensionally interconnected ordered macroporous structure and a robust framework were fabricated and used as stable and selective catalysts in the oxidative dehydrogenation(ODH)of propane.Due to the improved mass diffusion and higher number of exposed active sites in the ordered macroporous structure,the catalyst exhibited a remarkable olefin productivity of^16 golefin gcat^-1 h^-1,which is up to 2–100 times higher than that of ODH catalysts reported to date.The selectivity for olefins was 91.5%(propene:82.5%,ethene:9.0%)at 515℃,with a propane conversion of 14.3%.At the same time,the selectivity for the unwanted deep-oxidized CO2 product remained less than 1.0%.The tri-coordinated surface boron species were identified as the active catalytic sites for the ODH of propane.This study provides a route for preparing a new type of metal-free catalyst with stable structure against oxidation and remarkable catalytic activity,which may represent a potential candidate to promote the industrialization of the ODH process.
基金supported by the National First-rate Discipline Construction Project of Ningxia (Chemical Engineering and Technology)the Major Innovation Projects for Building First-class Universities in China’s Western Region (ZKZD2017003)+2 种基金the University Research Project of Ningxia (NGY2015027)the National Natural Science Foundation of China (21263018)the Project of Science and Technology of Personnel of Study Abroad (Ningxia (2014) 486)~~
文摘Photocatalytic H2evolution under visible light irradiation is an ideal process for solving energy shortage.The low cost of photocatalysts and high efficiency of hydrogen evolution are the two key factors to realize the industrialization of the process.The substitution of a noble‐metal cocatalyst with a non‐noble‐metal catalyst can significantly reduce the cost of the photocatalyst.The largescale synthesis and assembly of semiconductors and non‐noble‐metal cocatalysts to form photocatalysts through a simple method can further decrease the cost of photocatalysis.Here,we report a large‐scale and low‐cost coprecipitation method to form phosphide/CdS photocatalysts to realize photocatalytic H2evolution.CoP and MoP cocatalysts significantly enhanced the photocatalytic production of hydrogen.The optimal H2production rates on CoP/CdS and MoP/CdS were140and78μmol/h,which were7.0and4.0times higher than those obtained with bare CdS,respectively,and2.0times and1.1times higher than those obtained with1.0%Pt/CdS,respectively.This work provides a practical method for the large‐scale preparation of low‐cost photocatalysts.
文摘Among the sustainable energy sources,hydrogen is the one most promising for alleviating the pollution issues related to the usage of conventional fuels,as it can be produced in an efficient and eco-friendly way via electrocatalytic water splitting.The hydrogen evolution reaction(HER,a half-reaction of water splitting)plays a pivotal role in decreasing the price and increasing the catalytic efficiency of hydrogen production and is efficiently promoted by metal phosphides in different electrolytes.Herein,we summarize the recent advances in the development of metal phosphides as HER electrocatalysts,focus on their synthesis(post-treatment,in situ generation,and electrodeposition methods)and the enhancement of their electrocatalytic activity(via elemental doping,interface and vacancy engineering,construction of specific supports and nanostructures,and the design of bior polymetallic phosphides),and highlight the crucial issues and challenges of future development.
基金Projects(51674067,51422402) supported by the National Natural Science Foundation of ChinaProjects(N150101001,N160106004,N170106005) supported by the Fundamental Research Funds for the Central Universities,China
文摘The reaction kinetics for the leaching of low-grade scheelite concentrate was investigated in an autoclave with sodium hydroxide in the presence of phosphate. The effects of stirring speed (300-600 r/min), reaction temperature (353-383 K), sodium hydroxide concentration (1.69-6.76 mol/L) and phosphate concentration (0.68-1.69 mol/L) on the WO3 dissolution ratio were studied. The results showed that the WO3 dissolution ratio was practically independent of stirring speed, while it increased with increasing the reaction temperature, and the concentrations of sodium hydroxide and phosphate. The experimental data were consistent with the shrinking core model, with a surface chemical reaction as the leaching rate-determining step. The apparent activation energy was calculated as 49.56 kJ/mol, and the reaction orders with respect to the concentrations of sodium hydroxide and phosphate were determined as 0.27 and 0.67, respectively. The kinetics equation of the leaching process was established.
基金Project supported by the Knowledge Innovation Project of the Chinese Academy of Sciences (Nos. KZCX3-SW-339 and KSCX1-07) the Ministry of Science and Technology of China (No. 2001CCB00600).
文摘Activities of selected soil enzymes (invertase, acid phosphatase, proteinase,catalase, peroxidase and polyphenoloxi-dase) were determined under different spruce forests withrestoration histories of 5, 13, 18, 23, 27 years and an old growth forest over 400 years old in theeastern Qinghai-Tibetan Plateau, China, and their possible use as indicators of ecosystems healthwere analyzed. Plots 10 X 10 m with 4 replications were established to investigate three hypotheses:soil enzyme activities a) would increase with the restoration process; b) would be greater insurface soils than at lower depths; and c) would be correlated to selected physicochemicalproperties. Results showed that as the forests developed after restoration, invertase and peroxidaseactivities usually increased up to the 23 year point. Also soil enzyme activities were associatedwith surface soils and decreased with depths, suggesting that in earlier restoration stages surfaceaddition of organic fertilizer to soils might be more effective than additions at depth. In the 0-20cm soil, there were significant correlations (P < 0.01 or < 0.05) between some soil enzymeactivities and some selected chemical properties. Therefore, temporal changes in enzyme activitiesshould be included as an indicator when evaluating sustainable forest management practices.
文摘An experiment was conducted to examine the role of Mn in P fixation through comparing with Al and Fe. Hydroxides and oxides of Al, Fe and Mn were prepared in lab under opened and closed conditions to react with phosphate. The newly formed Mn hydroxide showed the strongest P-fixing abilityl even several times higher than Fe hydroxide, but became the lowest rapidly due to ageing when exposed to air. Mn oxide showed the lowest p-fixing ability. Therefore, a sound consideration on P fixation should be based on both quantities and p-fixing abilities of the compounds of Fe, Al and Mn. The importance of Mn on P availability should receive more attention especially under oxidation-reduction dynamic conditions.
基金Supported by the National Natural Science Foundation of China (No. 29836130).
文摘In liquid-liquid solvent extraction processes, diluents have a strong influence on the extraction mechanism and efficiency. In this study, benzene, cyclohexane, trichloromethane, carbon tetrachloride, methyl isobutyl ketone (MIBK), butyl acetate, and 1-octanol were used as diluents in the extraction of oxalic acid by trialkylphos-phine oxide (TRPO). The effects of extractant concentration, initial concentration of oxalic acid and diluent type on the extraction equilibrium partition coefficient are analyzed. The sequence of the extraction ability by different diluents is MIBK > butyl acetate > cyclohexane=benzene > carbon tetrachloride > 1-octanol > trichloromethane. Extraction mechanism was analyzed and extraction model parameters were evaluated.