H3PO4 oxidation roasting followed by HCl acid leaching was proposed to remove magnesium and calcium from electric furnace titanium slag containing 3.12% MgO and 0.86% CaO. XRF, XRD and SEM techniques were used to char...H3PO4 oxidation roasting followed by HCl acid leaching was proposed to remove magnesium and calcium from electric furnace titanium slag containing 3.12% MgO and 0.86% CaO. XRF, XRD and SEM techniques were used to characterize the composition, mineral phase component and microstructure of the titanium slag. The H3PO4 oxidation thermodynamic, mineral phase transformation, microstructure, element distribution in titanium slag during H3PO4 oxidation process and leaching process were investigated. The thermodynamic analysis indicated that H3PO4 could promote the decomposition of MgTi2O5 and CaSiO3. The results indicated that H3PO4 could effectively promote the transformation of titanium-bearing mineral to rutile and enrich the impurities in MxTi(3-x)O5 into phosphate which could be removed by acid leaching process. Under the studied conditions, the leaching rates of magnesium and calcium reached 94.68% and 87.19%, respectively. The acid leached slag containing 0.19% MgO and 0.13% CaO(mass fraction) was obtained.展开更多
The corrosion resistance characteristics of RE-rich RE_(50)Ta_(x)Zr_(50-x)O_(175+0.5x)oxides in RE_(2)Zr_(2)O_(7)-RETaO_(4)systems to calcium-magnesium-alumino-silicate(CMAS)at 1300°C,and the influence of RE^(3+)...The corrosion resistance characteristics of RE-rich RE_(50)Ta_(x)Zr_(50-x)O_(175+0.5x)oxides in RE_(2)Zr_(2)O_(7)-RETaO_(4)systems to calcium-magnesium-alumino-silicate(CMAS)at 1300°C,and the influence of RE^(3+)and Ta^(5+)on chemical reactions and reactive crystallization of CMAS melts were investigated.The results show that following the thermochemical reactions,apatite,pyrochlore,reprecipitated fluorite and residual Yb(Y)TaO4phases were the predominant reaction products.Formation abilities of apatite and pyrochlore were found to be proportional to the ionic radius of RE^(3+).The increase of Ta^(5+)amount can decrease the number of available RE^(3+)to form apatite.Moreover,the resistance characteristic to CMAS corrosion in RE_(50)Ta_(x)Zr_(50-x)O_(175+0.5x)systems was decided by the combined action of apatite and pyrochlore phases.The cohesive mixture of apatite and pyrochlore phases can generate a dense layer near the reaction front,which had a positive effect on suppressing CMAS infiltration.The ability of the fluorite+RETaO4two-phase field was determined to be sufficient to mitigate CMAS corrosion.展开更多
文摘H3PO4 oxidation roasting followed by HCl acid leaching was proposed to remove magnesium and calcium from electric furnace titanium slag containing 3.12% MgO and 0.86% CaO. XRF, XRD and SEM techniques were used to characterize the composition, mineral phase component and microstructure of the titanium slag. The H3PO4 oxidation thermodynamic, mineral phase transformation, microstructure, element distribution in titanium slag during H3PO4 oxidation process and leaching process were investigated. The thermodynamic analysis indicated that H3PO4 could promote the decomposition of MgTi2O5 and CaSiO3. The results indicated that H3PO4 could effectively promote the transformation of titanium-bearing mineral to rutile and enrich the impurities in MxTi(3-x)O5 into phosphate which could be removed by acid leaching process. Under the studied conditions, the leaching rates of magnesium and calcium reached 94.68% and 87.19%, respectively. The acid leached slag containing 0.19% MgO and 0.13% CaO(mass fraction) was obtained.
基金supported by the National Natural Science Foundation of China(No.51801170)the National Postdoctoral Program for Innovative Talents,China(No.BX20180265)+2 种基金the Natural Science Foundation of Hunan Province,China(No.2019JJ50570)the China Postdoctoral Science Foundation(No.2019M652786)the Research Initiation Project of Xiangtan University,China(No.18QDZ24)。
文摘The corrosion resistance characteristics of RE-rich RE_(50)Ta_(x)Zr_(50-x)O_(175+0.5x)oxides in RE_(2)Zr_(2)O_(7)-RETaO_(4)systems to calcium-magnesium-alumino-silicate(CMAS)at 1300°C,and the influence of RE^(3+)and Ta^(5+)on chemical reactions and reactive crystallization of CMAS melts were investigated.The results show that following the thermochemical reactions,apatite,pyrochlore,reprecipitated fluorite and residual Yb(Y)TaO4phases were the predominant reaction products.Formation abilities of apatite and pyrochlore were found to be proportional to the ionic radius of RE^(3+).The increase of Ta^(5+)amount can decrease the number of available RE^(3+)to form apatite.Moreover,the resistance characteristic to CMAS corrosion in RE_(50)Ta_(x)Zr_(50-x)O_(175+0.5x)systems was decided by the combined action of apatite and pyrochlore phases.The cohesive mixture of apatite and pyrochlore phases can generate a dense layer near the reaction front,which had a positive effect on suppressing CMAS infiltration.The ability of the fluorite+RETaO4two-phase field was determined to be sufficient to mitigate CMAS corrosion.