【目的】研究磷肥用量对新疆棉田土壤磷素有效性、植株磷吸收和分配、产量构成和棉田磷平衡的影响,为新疆棉田减磷增效和磷素可持续管理提供科学依据。【方法】采用大田试验,设置不同磷肥用量处理(不施磷肥对照,50,75,150和300 kg P_(2)...【目的】研究磷肥用量对新疆棉田土壤磷素有效性、植株磷吸收和分配、产量构成和棉田磷平衡的影响,为新疆棉田减磷增效和磷素可持续管理提供科学依据。【方法】采用大田试验,设置不同磷肥用量处理(不施磷肥对照,50,75,150和300 kg P_(2)O_(5)·hm^(-2)),测定了棉花不同生育期土壤速效磷、植株吸磷量和磷分配、籽棉产量,计算了棉田磷肥利用率和磷素平衡状况。【结果】(1)棉田土壤速效磷表现出随施磷量增加而增加的趋势,超过150 kg P_(2)O_(5)·hm^(-2)施磷量时,土壤速效磷不再增加。(2)植株累积吸磷量呈现出随施磷量增加而先升高后降低的趋势,在150 kg P_(2)O_(5)·hm^(-2)施磷量时,植株累积吸磷量最高;植株生殖器官(蕾、铃、絮、籽、壳)磷素吸收比例随施磷量增加表现出先增加后降低的趋势,在150 kg P_(2)O_(5)·hm^(-2)施磷量时,生殖器官累积磷素吸收比例最高。(3)籽棉产量随施磷量增加表现出先增加后略有降低的趋势,在50~150 kg P_(2)O_(5)·hm^(-2)施磷量时籽棉产量最高,为5912~6288 kg·hm^(-2)。(4)磷肥利用率在施磷肥75 kg P_(2)O_(5)·hm^(-2)达到最优,为22%;随施磷量的增加,棉田土壤磷素盈余量呈现增加的趋势,在施磷量75 kg P_(2)O_(5)·hm^(-2),棉田磷素收支开始出现盈余,磷素盈余为5.59 kg P_(2)O_(5)·hm^(-2)。【结论】磷肥用量可通过土壤磷素有效性、棉花磷素吸收和分配,影响棉籽产量;在综合考虑土壤磷素有效性、棉花磷素吸收和产量、磷肥利用率和棉田磷素收支平衡的基础上,建议新疆棉田磷肥施用量为50~150 kg P_(2)O_(5)·hm^(-2)。展开更多
The relationship between the growth and nutrient uptake by perennial crop such as pepper is poorly understood and improved understanding of such relationship is important for the establishment of rational crop managem...The relationship between the growth and nutrient uptake by perennial crop such as pepper is poorly understood and improved understanding of such relationship is important for the establishment of rational crop management practices. In order to characterize the growth performance and quantify the nutrient removed, this study presents results of three consecutive cropping years, fertilized with 1, 2 and 3 ton ha1 of NPK fertilizer respectively. Plant biomass accumulated was evaluated every two months, separating plant into stems, branches, leaves, berries, fruit spikes and flowers. Total biomass of pepper increased linearly and reach maximum at 22 months after planting. Thereafter, a decrease in dry matter was observed due to fruit export and fallen leaves at harvest. However, at the 28 months of planting, the biomass of pepper vine showing some increasing trend indicating the vegetative growth was reassumed for the next flowering. At 30 months, the pepper had removed 293.08 kg of nitrogen, 46.41 kg of phosphorus, 264.95 kg of potassium, 35.4 kg of magnesium and 74.82 kg of calcium. Based on data obtained, the nutrient uptake rates were lower than nutrient applied suggested that fertilizer had been overused for pepper production. In light of these results obtained, the optimum fertilizer dosage would be 62-10-62-6-18 kg/ha, 237-22-246-22-65 kg/ha and 390-62-352-47-100 kg/ha of N-P-K-Mg-Ca for the year 1, year 2 and year 3 of cropping year.展开更多
文摘【目的】研究磷肥用量对新疆棉田土壤磷素有效性、植株磷吸收和分配、产量构成和棉田磷平衡的影响,为新疆棉田减磷增效和磷素可持续管理提供科学依据。【方法】采用大田试验,设置不同磷肥用量处理(不施磷肥对照,50,75,150和300 kg P_(2)O_(5)·hm^(-2)),测定了棉花不同生育期土壤速效磷、植株吸磷量和磷分配、籽棉产量,计算了棉田磷肥利用率和磷素平衡状况。【结果】(1)棉田土壤速效磷表现出随施磷量增加而增加的趋势,超过150 kg P_(2)O_(5)·hm^(-2)施磷量时,土壤速效磷不再增加。(2)植株累积吸磷量呈现出随施磷量增加而先升高后降低的趋势,在150 kg P_(2)O_(5)·hm^(-2)施磷量时,植株累积吸磷量最高;植株生殖器官(蕾、铃、絮、籽、壳)磷素吸收比例随施磷量增加表现出先增加后降低的趋势,在150 kg P_(2)O_(5)·hm^(-2)施磷量时,生殖器官累积磷素吸收比例最高。(3)籽棉产量随施磷量增加表现出先增加后略有降低的趋势,在50~150 kg P_(2)O_(5)·hm^(-2)施磷量时籽棉产量最高,为5912~6288 kg·hm^(-2)。(4)磷肥利用率在施磷肥75 kg P_(2)O_(5)·hm^(-2)达到最优,为22%;随施磷量的增加,棉田土壤磷素盈余量呈现增加的趋势,在施磷量75 kg P_(2)O_(5)·hm^(-2),棉田磷素收支开始出现盈余,磷素盈余为5.59 kg P_(2)O_(5)·hm^(-2)。【结论】磷肥用量可通过土壤磷素有效性、棉花磷素吸收和分配,影响棉籽产量;在综合考虑土壤磷素有效性、棉花磷素吸收和产量、磷肥利用率和棉田磷素收支平衡的基础上,建议新疆棉田磷肥施用量为50~150 kg P_(2)O_(5)·hm^(-2)。
文摘The relationship between the growth and nutrient uptake by perennial crop such as pepper is poorly understood and improved understanding of such relationship is important for the establishment of rational crop management practices. In order to characterize the growth performance and quantify the nutrient removed, this study presents results of three consecutive cropping years, fertilized with 1, 2 and 3 ton ha1 of NPK fertilizer respectively. Plant biomass accumulated was evaluated every two months, separating plant into stems, branches, leaves, berries, fruit spikes and flowers. Total biomass of pepper increased linearly and reach maximum at 22 months after planting. Thereafter, a decrease in dry matter was observed due to fruit export and fallen leaves at harvest. However, at the 28 months of planting, the biomass of pepper vine showing some increasing trend indicating the vegetative growth was reassumed for the next flowering. At 30 months, the pepper had removed 293.08 kg of nitrogen, 46.41 kg of phosphorus, 264.95 kg of potassium, 35.4 kg of magnesium and 74.82 kg of calcium. Based on data obtained, the nutrient uptake rates were lower than nutrient applied suggested that fertilizer had been overused for pepper production. In light of these results obtained, the optimum fertilizer dosage would be 62-10-62-6-18 kg/ha, 237-22-246-22-65 kg/ha and 390-62-352-47-100 kg/ha of N-P-K-Mg-Ca for the year 1, year 2 and year 3 of cropping year.