The growth kinetics of microarc oxidation(MAO)coatings on Ti6Al4V alloy was studied by designing an electrolyte with low PO_(4)^(3−)content and high B_(4)O_(7)^(2−)content,using scanning electron microscopy,transmissi...The growth kinetics of microarc oxidation(MAO)coatings on Ti6Al4V alloy was studied by designing an electrolyte with low PO_(4)^(3−)content and high B_(4)O_(7)^(2−)content,using scanning electron microscopy,transmission electron microscopy,X-ray diffraction,and potentiodynamic polarization.The results showed that B_(4)O_(7)^(2−)increased the spark intensity and dissolved most of the oxides at high temperatures.Then,a thicker barrier layer at the coating/substrate interface was produced,which increased the polarization resistance of the coating.PO_(4)^(3−)at a low concentration also promoted the uniform growth of the MAO coating and the formation of hat-shaped holes in the outer deposition layer.The thickness of the MAO coatings obtained in Na_(2)B_(4)O_(7) electrolytes exhibited an exponential increase with time at spark discharge stage,while that of the MAO coating obtained in phosphate–tetraborate electrolytes showed a linear trend as the PO_(4)^(3−)content increased.展开更多
Effects of citrate and tartrate on phosphate adsorption and desorption from kaolinite, goethite, amorphous Al-oxide and Ultisol were studied. P adsorption was significantly decreased as the concentration of the organi...Effects of citrate and tartrate on phosphate adsorption and desorption from kaolinite, goethite, amorphous Al-oxide and Ultisol were studied. P adsorption was significantly decreased as the concentration of the organic anions increased from 10-5 to 10-1 M. At 0.1 M and pH 7.0, tartrate decreased P adsorption by 27.6% - 50.6% and citrate by 37.9 - 80.4%, depending on the kinds of adsorbent. Little Al and/ or Fe were detected in the equilibrium solutions, even at the highest concentration of the organic anions. Effects of the organic anions on phosphate adsorption follow essentially the competitive adsorption mechanism.The selectivity coefficients for competitive adsorption can be used to compare the effectiveness of different organic anions in reducing P adsorption under given conditions.Phosphate desorption was increased by 3 to 100 times in the presence of 0.001 M citrate or tartrate compared to that in 0.02 M KC1 solution alone. However, for all the soil and clay minerals studied the amount of P desorbed by citrate or tartrate was generally lower than or close to that of isotopically exchangeable P. The effect of organic anions on phosphate desorption arises primarily from ligand exchange.展开更多
A promising preparation method for lithium hexafluorophosphate(LiPF6)was introduced.Phosphorus pentafluoride(PF5) was first prepared using CaF2 and P2O5 at 280℃for 3 h.LiPF6 was synthesized in acetonitrile solvent by...A promising preparation method for lithium hexafluorophosphate(LiPF6)was introduced.Phosphorus pentafluoride(PF5) was first prepared using CaF2 and P2O5 at 280℃for 3 h.LiPF6 was synthesized in acetonitrile solvent by LiF and PF5 at room temperature(20-30℃)for 4 h.The synthesized LiPF6 was characterized by infrared spectrometry and X-ray diffraction(XRD). Atomic absorption and ion chromatography results show that the purity of synthesized LiPF6 reaches 99.98%.Thermal stability of self-synthesized LiPF6 was analyzed by differential thermal analysis and thermogravimetry.The results indicate that the self-synthesized LiPF6 has higher purity,lower impurity contents and better thermal stability than the commercial LiPF6.展开更多
The application of rechargeable lithium metal batteries(LMBs)has been hindered by the fast growth of lithium dendrites during charge and the limited cycling life because of the decomposition of the electrolyte at the ...The application of rechargeable lithium metal batteries(LMBs)has been hindered by the fast growth of lithium dendrites during charge and the limited cycling life because of the decomposition of the electrolyte at the interface.Here,we have developed a non-flammable triethyl phosphate(TEP)-based electrolyte with tris(hexafluoroisopropyl)phosphate(THFP)as an additive.The polar nature of the C–F bonding and the rich CF3 groups in THFP lowers its LUMO energy and HOMO energy to help form a stable,Li F-rich solid electrolyte interphase(SEI)layer through the reduction of THFP and increases the binding ability of the PF6-anions,which significantly suppresses lithium dendrite growth and reduces the electrolyte decomposition.Moreover,THFP participates in the formation of a thin,C–F rich electrolyte interphase(CEI)layer to provide the stable cycling of the cathode at a high voltage.The symmetric Li||Li and full Li/NCM622 cells with THFP additive have small polarization and long cycling life,which demonstrates the importance of the additive to the application of the LMBs.展开更多
文摘The growth kinetics of microarc oxidation(MAO)coatings on Ti6Al4V alloy was studied by designing an electrolyte with low PO_(4)^(3−)content and high B_(4)O_(7)^(2−)content,using scanning electron microscopy,transmission electron microscopy,X-ray diffraction,and potentiodynamic polarization.The results showed that B_(4)O_(7)^(2−)increased the spark intensity and dissolved most of the oxides at high temperatures.Then,a thicker barrier layer at the coating/substrate interface was produced,which increased the polarization resistance of the coating.PO_(4)^(3−)at a low concentration also promoted the uniform growth of the MAO coating and the formation of hat-shaped holes in the outer deposition layer.The thickness of the MAO coatings obtained in Na_(2)B_(4)O_(7) electrolytes exhibited an exponential increase with time at spark discharge stage,while that of the MAO coating obtained in phosphate–tetraborate electrolytes showed a linear trend as the PO_(4)^(3−)content increased.
文摘Effects of citrate and tartrate on phosphate adsorption and desorption from kaolinite, goethite, amorphous Al-oxide and Ultisol were studied. P adsorption was significantly decreased as the concentration of the organic anions increased from 10-5 to 10-1 M. At 0.1 M and pH 7.0, tartrate decreased P adsorption by 27.6% - 50.6% and citrate by 37.9 - 80.4%, depending on the kinds of adsorbent. Little Al and/ or Fe were detected in the equilibrium solutions, even at the highest concentration of the organic anions. Effects of the organic anions on phosphate adsorption follow essentially the competitive adsorption mechanism.The selectivity coefficients for competitive adsorption can be used to compare the effectiveness of different organic anions in reducing P adsorption under given conditions.Phosphate desorption was increased by 3 to 100 times in the presence of 0.001 M citrate or tartrate compared to that in 0.02 M KC1 solution alone. However, for all the soil and clay minerals studied the amount of P desorbed by citrate or tartrate was generally lower than or close to that of isotopically exchangeable P. The effect of organic anions on phosphate desorption arises primarily from ligand exchange.
基金Project(2007CB613607)supported by the National Basic Research Program of China
文摘A promising preparation method for lithium hexafluorophosphate(LiPF6)was introduced.Phosphorus pentafluoride(PF5) was first prepared using CaF2 and P2O5 at 280℃for 3 h.LiPF6 was synthesized in acetonitrile solvent by LiF and PF5 at room temperature(20-30℃)for 4 h.The synthesized LiPF6 was characterized by infrared spectrometry and X-ray diffraction(XRD). Atomic absorption and ion chromatography results show that the purity of synthesized LiPF6 reaches 99.98%.Thermal stability of self-synthesized LiPF6 was analyzed by differential thermal analysis and thermogravimetry.The results indicate that the self-synthesized LiPF6 has higher purity,lower impurity contents and better thermal stability than the commercial LiPF6.
基金the National Natural Science Foundation of China(51971090 and U21A20311)。
文摘The application of rechargeable lithium metal batteries(LMBs)has been hindered by the fast growth of lithium dendrites during charge and the limited cycling life because of the decomposition of the electrolyte at the interface.Here,we have developed a non-flammable triethyl phosphate(TEP)-based electrolyte with tris(hexafluoroisopropyl)phosphate(THFP)as an additive.The polar nature of the C–F bonding and the rich CF3 groups in THFP lowers its LUMO energy and HOMO energy to help form a stable,Li F-rich solid electrolyte interphase(SEI)layer through the reduction of THFP and increases the binding ability of the PF6-anions,which significantly suppresses lithium dendrite growth and reduces the electrolyte decomposition.Moreover,THFP participates in the formation of a thin,C–F rich electrolyte interphase(CEI)layer to provide the stable cycling of the cathode at a high voltage.The symmetric Li||Li and full Li/NCM622 cells with THFP additive have small polarization and long cycling life,which demonstrates the importance of the additive to the application of the LMBs.