Human acidic and basic fibroblast growth factors (aFGF and bFGF) are classic and well characterized members of the heparin binding growth factor family. Heparin is generally thought to play an extremely important rol...Human acidic and basic fibroblast growth factors (aFGF and bFGF) are classic and well characterized members of the heparin binding growth factor family. Heparin is generally thought to play an extremely important role in regulating aFGF and bFGF bioactivities through its strong binding with them. In order to unravel the mechanism of the interactions between heparin and FGFs, and evaluate the importance of heparin sulfate groups' binding with FGFs, surface plasmon resonance analyses were performed using IAsys Cuvettes System. Heparin and its regioselectively desulfated derivatives were immobilized on the cuvettes. aFGF and bFGF solutions with different concentrations were pipetted into the cuvettes and the progress of the interaction was monitored in real\|time by Windows based software, yielding kinetic and equilibrium constants for these interactions. In addition, in order to reduce the delicate difference among the cuvettes, inhibition analyses of mixture of FGFs and immobilized native heparin by modified heparins were also done. The data from these two methods were similar, indicating that all sulfate groups at 2 O, 6 O and N in heparin were required for the binding to aFGF; and that their contribution to the binding was in the order 2 O, N and 6 O sulfate group. In contrast, definite contribution of the 6 O sulfate group to the binding with bFGF was most apparent, while the other two sulfate groups appeared to be necessary in the order 2 O and N sulfate group. These methods established here can be used for analysing the effect of sulfate groups in heparin on the binding with other human FGF members or other heparin binding proteins.展开更多
AIM: To delineate the mechanisms of renal vasoconstriction in hepatorenal syndrome (HRS), we investigated the expression of type I inositol 1, 4, 5-triphosphate receptors (IP3R I) of kidney in mice with fulminant...AIM: To delineate the mechanisms of renal vasoconstriction in hepatorenal syndrome (HRS), we investigated the expression of type I inositol 1, 4, 5-triphosphate receptors (IP3R I) of kidney in mice with fulminant hepatic failure (FHF). METHODS: FHF was induced by lipopolysaccharide (LPS) in D-galactosamine (GAIN) sensitized BALB/c mice. There were 20 mice in normal saline (NS)-treated group, 20 mice in LPS-treated group, 20 mice in GaIN- treated group, and 60 mice in GalN/LPS-treated group (FHF group). Liver and kidney tissues were obtained at 2, 6, and 9 h after administration. The liver and kidney specimens were stained with hematoxylin-eosin for studying morphological changes under light microscope. The expression of IP3R I in kidney tissue was tested by immunohistochemistry, Western blot and reverse transcription (RT)-PCR. RESULTS: Kidney tissues were morphologically normal at all time points in all groups. IP3R I proteins were found localized in the plasma region of glomerular mesangial cells (GMC) and vascular smooth muscle cells (VSMC) in kidney by immunohistochemical staining. In kidney of mice with FHF at 6 h and 9 h IP3R I staining was upregulated. Results from Western blot demonstrated consistent and significant increment of IP3R I expression in mice with FHF at 6 h and 9 h (t = 3.16, P 〈 0.05; t = 5.43, P 〈 0.01). Furthermore, we evaluated IP3R I mRNA expression by RT-PCR and observed marked upregulation of IP3R I mRNA in FHF samples at 2 h, 6 h and 9 h compared to controls (t = 2.97, P 〈 0.05; t = 4.42, P 〈 0.01; t = 3.81, P 〈 0.01). CONCLUSION: The expression of IP3R I protein increased in GMC and renal VSMC of mice with FHF, possibly caused by up-regulation of IP3R I mRNA.展开更多
文摘Human acidic and basic fibroblast growth factors (aFGF and bFGF) are classic and well characterized members of the heparin binding growth factor family. Heparin is generally thought to play an extremely important role in regulating aFGF and bFGF bioactivities through its strong binding with them. In order to unravel the mechanism of the interactions between heparin and FGFs, and evaluate the importance of heparin sulfate groups' binding with FGFs, surface plasmon resonance analyses were performed using IAsys Cuvettes System. Heparin and its regioselectively desulfated derivatives were immobilized on the cuvettes. aFGF and bFGF solutions with different concentrations were pipetted into the cuvettes and the progress of the interaction was monitored in real\|time by Windows based software, yielding kinetic and equilibrium constants for these interactions. In addition, in order to reduce the delicate difference among the cuvettes, inhibition analyses of mixture of FGFs and immobilized native heparin by modified heparins were also done. The data from these two methods were similar, indicating that all sulfate groups at 2 O, 6 O and N in heparin were required for the binding to aFGF; and that their contribution to the binding was in the order 2 O, N and 6 O sulfate group. In contrast, definite contribution of the 6 O sulfate group to the binding with bFGF was most apparent, while the other two sulfate groups appeared to be necessary in the order 2 O and N sulfate group. These methods established here can be used for analysing the effect of sulfate groups in heparin on the binding with other human FGF members or other heparin binding proteins.
基金Supported by National Natural Science Foundation of China, No. 30270607
文摘AIM: To delineate the mechanisms of renal vasoconstriction in hepatorenal syndrome (HRS), we investigated the expression of type I inositol 1, 4, 5-triphosphate receptors (IP3R I) of kidney in mice with fulminant hepatic failure (FHF). METHODS: FHF was induced by lipopolysaccharide (LPS) in D-galactosamine (GAIN) sensitized BALB/c mice. There were 20 mice in normal saline (NS)-treated group, 20 mice in LPS-treated group, 20 mice in GaIN- treated group, and 60 mice in GalN/LPS-treated group (FHF group). Liver and kidney tissues were obtained at 2, 6, and 9 h after administration. The liver and kidney specimens were stained with hematoxylin-eosin for studying morphological changes under light microscope. The expression of IP3R I in kidney tissue was tested by immunohistochemistry, Western blot and reverse transcription (RT)-PCR. RESULTS: Kidney tissues were morphologically normal at all time points in all groups. IP3R I proteins were found localized in the plasma region of glomerular mesangial cells (GMC) and vascular smooth muscle cells (VSMC) in kidney by immunohistochemical staining. In kidney of mice with FHF at 6 h and 9 h IP3R I staining was upregulated. Results from Western blot demonstrated consistent and significant increment of IP3R I expression in mice with FHF at 6 h and 9 h (t = 3.16, P 〈 0.05; t = 5.43, P 〈 0.01). Furthermore, we evaluated IP3R I mRNA expression by RT-PCR and observed marked upregulation of IP3R I mRNA in FHF samples at 2 h, 6 h and 9 h compared to controls (t = 2.97, P 〈 0.05; t = 4.42, P 〈 0.01; t = 3.81, P 〈 0.01). CONCLUSION: The expression of IP3R I protein increased in GMC and renal VSMC of mice with FHF, possibly caused by up-regulation of IP3R I mRNA.