The mixture of CaHPO 4·2H 2O and CaCO 3 was ground in an aqueous system under appropriate conditions to investigate the mechanochemical reaction for the synthesis of crystalline hydroxyapatite (HA) powder. Hyd...The mixture of CaHPO 4·2H 2O and CaCO 3 was ground in an aqueous system under appropriate conditions to investigate the mechanochemical reaction for the synthesis of crystalline hydroxyapatite (HA) powder. Hydroxyapatite of high crystallinity powder including trace Ca 10 (PO 4) 6CO 3(OH) and Ca 9HPO 4(PO 4) 6OH can be synthesized by mechanical activation without further thermal treatment at a high temperature. The synthesis reaction during the grinding process was almost completed within 1h. The as-ground powder exhibits a particle distribution of 20-100nm in size with a spherical or rodlike morphology. The composition and degree of crystallinity of the mechanochemical synthesized hydroxyapatite powders were coincident with the cement-type hydroxyapatite.展开更多
Magnesium alloys have good biocompatibility, but their mechanical properties and corrosion resistance may not be satisfied for using as degradable materials within bone due to its high corrosion rate in the physiologi...Magnesium alloys have good biocompatibility, but their mechanical properties and corrosion resistance may not be satisfied for using as degradable materials within bone due to its high corrosion rate in the physiological environment. Nano β-TCP particles were added into Mg-Zn-Zr alloy to improve its microstructure and the properties. As-extruded Mg-3Zn-0.8Zr alloy and Mg-3Zn-0.8Zr/xβ-TCP (x=0.5%, 1.0% and 1.5%) composites were respectively fabricated. The grains of Mg-Zn-Zr/β-TCP composites were significantly refined. The results of the tensile tests indicate that the ultimate tensile strength and the elongation of composites were improved with the addition of β-TCP. The electrochemical test result in simulation body fluid shows that the corrosion resistance of the composites was strongly enhanced comparing with that of the alloy. The corrosion potential of Mg-3Zn0.8-Zr/1.0β-TCP composite is 1.547 V and its corrosion current density is 1.20×10 6 A/cm 2 .展开更多
To study the effect of electrolytic concentration,bioactive ceramic films containing Ca and P on the surface of the Ti6Al4V alloy were prepared by micro-arc oxidation(MAO) in aqueous solutions of different concentrati...To study the effect of electrolytic concentration,bioactive ceramic films containing Ca and P on the surface of the Ti6Al4V alloy were prepared by micro-arc oxidation(MAO) in aqueous solutions of different concentrations.Composition,micro-morphology,wettability of the films and their corrosion behavior in a Hank's SBF were studied.Our experimental results show that the film is mainly composed of anatase,rutile and amorphous phases.With an increase in electrolytic concentration,the ratio of rutile in films enlarge and small amounts of calcium phosphate(Ca3(PO4)2) and hydroxyapatite(HA) appear.The number of micropores in films increases but their dimensions decrease and their porosities increase slightly.As the surface roughness of MAO film increases with concentration,the wettablility of the oxide film improves continually,while micro-hardness increases at first and then decreases.MAO treatment clearly improves the corrosion resistance of substrates in a Hank's SBF.展开更多
Interactions of N, P and K fertilizers in soil-plant systems are widelyrecognized. This study focused on the transformations of monocalcium phosphate (Ca(H_2PO_4)_2) (MCP)with co-application of ammonium and potassium ...Interactions of N, P and K fertilizers in soil-plant systems are widelyrecognized. This study focused on the transformations of monocalcium phosphate (Ca(H_2PO_4)_2) (MCP)with co-application of ammonium and potassium fertilizers in three different soils. The resultsshowed that after 1 d incubation a large portion of the MCP applied in the paddy, calcareous and redsoils became the water-insoluble form and the recoveries of P applied as Olsen P varied greatly inthese three soils. Application of ammonium sulfate ((NH_4)_2SO_4) (AS) or potassium chloride (KCl)reduced WSP significantly the soils with AS more effective than KCl in the calcareous soil, whilethe reverse occurred in the red soil. Meanwhile, in the paddy soil, co-application of the twofertilizers reduced WSP more than when the fertilizers were applied individually. The co-applicationof AS with MCP in the paddy and calcareous soils significantly reduced Olsen P, but the oppositeoccurred in the red soil. The experiment on the effect of different accompanying anions showed thatthe ammonium fertilizers (PNCl and PNS) reduced WSP more effectively than the correspondingpotassium fertilizers (PKCl and PKS) in the calcareous soil due to the difference of the cations,whereas in the red soil, the chlorides reduced WSP more effectively than the sulfates. Overall,co-application of ammonium or potassium fertilizers with MCP significantly decreased availability ofP from MCP during its transformation in soils, especially when MCP was applied in combination withammonium in the calcareous soil.展开更多
To explore the preparative method an d study the degradation characteristics of bone repair composite of DL polylac tic acid (PDLLA)/hydroxyapatite(HA)/decalcifying bone matrix (DBM) in vitro. Methods: An emulsion ble...To explore the preparative method an d study the degradation characteristics of bone repair composite of DL polylac tic acid (PDLLA)/hydroxyapatite(HA)/decalcifying bone matrix (DBM) in vitro. Methods: An emulsion blend method was developed to prepare the composite of PDLLA/HA/DBM in weight ratio of PDLLA:HA:DBM= 1.5 2 : 1 1.5 : 1. The dynamic changes of weight, biomechanical property and pH value of PDLLA/ HA/DBM and PDLLA in phosphate buffered saline (PBS, pH 7.4 ) were studied re spectively through degradation tests in vitro. Results: Without being heated, PDLLA, HA and DBM could be synt hesized with the emulsion blend method as bone composite of PDLLA/HA/DBM, which had both osteoconductive and osteoinductive effects. The diameter of the apertu re was 100 400 μm and the gap rate was 71.3 %. During degradation, the pH v alue of PDLLA solution decreased lightly within 2 weeks, but decreased obviously at the end of 4 weeks and the value was 4.0 . While the pH value of PDLLA/H A/DBM kept quite steady and was 6.4 at the end of 12 weeks. The weight of PDLLA changed little within 4 weeks, then changed obviously and was 50% of its initia l weight at the end of 12 weeks. While the weight of PDLLA/HA/DBM changed little within 5 weeks, then changed obviously and was 60% of the initial weight at the end of 12 weeks. The initial biomechanical strength of PDLLA was 1.33 MPa, decreased little within 3 weeks, then changed obviously and kept at 0.11 MP a at the end of 12 weeks. The initial biomechanical strength of PDLLA/HA/DBM was 1.7 MPa, decreased little within 4 weeks, then changed obviously and kept at 0.21 MPa at the end of 12 weeks. Conclusions: The emulsion blend method is a new method to prepa re bone repair materials. As a new bone repair material, PDLLA/HA/DBM is more su itable for regeneration and cell implantation, and the environment during its de gradation is advantageous to the growth of bone cells.展开更多
The calcium phosphate (CaP) particles have attracted much attention in gene therapy. How to construct stable gene particles was the determining factor. In this study,hybrid multi-shell CaP gene particles were successf...The calcium phosphate (CaP) particles have attracted much attention in gene therapy. How to construct stable gene particles was the determining factor. In this study,hybrid multi-shell CaP gene particles were successfully constructed. First,CaP nanoparticles served as a core and were coated with DNA for colloidal stabilization. The ξ-potential of DNA-coated CaP nanoparticles was -15 mV. Then polyethylenimine (PEI) was added and adsorbed outside of the DNA layer due to the electrostatic attraction. The ξ-potential of hybrid multi-shell CaP particles was slightly positive. With addition of PEI,the hybrid multi-shell particles could condense DNA effectively,which was de-termined by ethidium bromide (EtBr) exclusion assay. The hybrid particles were spherical and uniform with diameters of about 150 nm at proper conditions. By simple modification of PEI,the hybrid multi-shell CaP gene particles were successfully constructed. They may have great potential in gene therapy.展开更多
We examined salt tolerance responsive genes in Pak-choi under salt stress and analyze their potential function. The LRNA differential display was used to screen the transcript derived fragments (TDFs) related to sal...We examined salt tolerance responsive genes in Pak-choi under salt stress and analyze their potential function. The LRNA differential display was used to screen the transcript derived fragments (TDFs) related to salinity tolerance in tolerant and Loderately tolerant Pak-choi germplasm. Seventy-eight primer combinations generated 101 differential eDNA fragments, which ere divided into 10 expression types. Seven cDNA sequences (GenBank accession Nos. DQ006915-DQ006921) obtained and ,~quenced were highly homologous to some known expression genes or the genes related to the signaling pathways in plants under ifferent abiotic stress.展开更多
文摘The mixture of CaHPO 4·2H 2O and CaCO 3 was ground in an aqueous system under appropriate conditions to investigate the mechanochemical reaction for the synthesis of crystalline hydroxyapatite (HA) powder. Hydroxyapatite of high crystallinity powder including trace Ca 10 (PO 4) 6CO 3(OH) and Ca 9HPO 4(PO 4) 6OH can be synthesized by mechanical activation without further thermal treatment at a high temperature. The synthesis reaction during the grinding process was almost completed within 1h. The as-ground powder exhibits a particle distribution of 20-100nm in size with a spherical or rodlike morphology. The composition and degree of crystallinity of the mechanochemical synthesized hydroxyapatite powders were coincident with the cement-type hydroxyapatite.
基金Project(51071108)supported by the National Natural Science Foundation of ChinaProject(09JCZDJC18500)supported by the Key Project of Natural Science Foundation of Tianjin,China
文摘Magnesium alloys have good biocompatibility, but their mechanical properties and corrosion resistance may not be satisfied for using as degradable materials within bone due to its high corrosion rate in the physiological environment. Nano β-TCP particles were added into Mg-Zn-Zr alloy to improve its microstructure and the properties. As-extruded Mg-3Zn-0.8Zr alloy and Mg-3Zn-0.8Zr/xβ-TCP (x=0.5%, 1.0% and 1.5%) composites were respectively fabricated. The grains of Mg-Zn-Zr/β-TCP composites were significantly refined. The results of the tensile tests indicate that the ultimate tensile strength and the elongation of composites were improved with the addition of β-TCP. The electrochemical test result in simulation body fluid shows that the corrosion resistance of the composites was strongly enhanced comparing with that of the alloy. The corrosion potential of Mg-3Zn0.8-Zr/1.0β-TCP composite is 1.547 V and its corrosion current density is 1.20×10 6 A/cm 2 .
基金Projects 50535050 supported by the National Natural Science Foundation of ChinaNCET-06-0479 by the Program for New Century Excellent Talents in University of China
文摘To study the effect of electrolytic concentration,bioactive ceramic films containing Ca and P on the surface of the Ti6Al4V alloy were prepared by micro-arc oxidation(MAO) in aqueous solutions of different concentrations.Composition,micro-morphology,wettability of the films and their corrosion behavior in a Hank's SBF were studied.Our experimental results show that the film is mainly composed of anatase,rutile and amorphous phases.With an increase in electrolytic concentration,the ratio of rutile in films enlarge and small amounts of calcium phosphate(Ca3(PO4)2) and hydroxyapatite(HA) appear.The number of micropores in films increases but their dimensions decrease and their porosities increase slightly.As the surface roughness of MAO film increases with concentration,the wettablility of the oxide film improves continually,while micro-hardness increases at first and then decreases.MAO treatment clearly improves the corrosion resistance of substrates in a Hank's SBF.
基金Project supported by the National Natural Science Foundation of China (No. 40071051) the National Key Basic Research Support Foundation of China (No. G1999011802).
文摘Interactions of N, P and K fertilizers in soil-plant systems are widelyrecognized. This study focused on the transformations of monocalcium phosphate (Ca(H_2PO_4)_2) (MCP)with co-application of ammonium and potassium fertilizers in three different soils. The resultsshowed that after 1 d incubation a large portion of the MCP applied in the paddy, calcareous and redsoils became the water-insoluble form and the recoveries of P applied as Olsen P varied greatly inthese three soils. Application of ammonium sulfate ((NH_4)_2SO_4) (AS) or potassium chloride (KCl)reduced WSP significantly the soils with AS more effective than KCl in the calcareous soil, whilethe reverse occurred in the red soil. Meanwhile, in the paddy soil, co-application of the twofertilizers reduced WSP more than when the fertilizers were applied individually. The co-applicationof AS with MCP in the paddy and calcareous soils significantly reduced Olsen P, but the oppositeoccurred in the red soil. The experiment on the effect of different accompanying anions showed thatthe ammonium fertilizers (PNCl and PNS) reduced WSP more effectively than the correspondingpotassium fertilizers (PKCl and PKS) in the calcareous soil due to the difference of the cations,whereas in the red soil, the chlorides reduced WSP more effectively than the sulfates. Overall,co-application of ammonium or potassium fertilizers with MCP significantly decreased availability ofP from MCP during its transformation in soils, especially when MCP was applied in combination withammonium in the calcareous soil.
文摘To explore the preparative method an d study the degradation characteristics of bone repair composite of DL polylac tic acid (PDLLA)/hydroxyapatite(HA)/decalcifying bone matrix (DBM) in vitro. Methods: An emulsion blend method was developed to prepare the composite of PDLLA/HA/DBM in weight ratio of PDLLA:HA:DBM= 1.5 2 : 1 1.5 : 1. The dynamic changes of weight, biomechanical property and pH value of PDLLA/ HA/DBM and PDLLA in phosphate buffered saline (PBS, pH 7.4 ) were studied re spectively through degradation tests in vitro. Results: Without being heated, PDLLA, HA and DBM could be synt hesized with the emulsion blend method as bone composite of PDLLA/HA/DBM, which had both osteoconductive and osteoinductive effects. The diameter of the apertu re was 100 400 μm and the gap rate was 71.3 %. During degradation, the pH v alue of PDLLA solution decreased lightly within 2 weeks, but decreased obviously at the end of 4 weeks and the value was 4.0 . While the pH value of PDLLA/H A/DBM kept quite steady and was 6.4 at the end of 12 weeks. The weight of PDLLA changed little within 4 weeks, then changed obviously and was 50% of its initia l weight at the end of 12 weeks. While the weight of PDLLA/HA/DBM changed little within 5 weeks, then changed obviously and was 60% of the initial weight at the end of 12 weeks. The initial biomechanical strength of PDLLA was 1.33 MPa, decreased little within 3 weeks, then changed obviously and kept at 0.11 MP a at the end of 12 weeks. The initial biomechanical strength of PDLLA/HA/DBM was 1.7 MPa, decreased little within 4 weeks, then changed obviously and kept at 0.21 MPa at the end of 12 weeks. Conclusions: The emulsion blend method is a new method to prepa re bone repair materials. As a new bone repair material, PDLLA/HA/DBM is more su itable for regeneration and cell implantation, and the environment during its de gradation is advantageous to the growth of bone cells.
基金Project supported by the National Natural Science Foundation of China (No. 50873089)the Natural Science Foundation of Zhejiang Province, China (No. Y407173)
文摘The calcium phosphate (CaP) particles have attracted much attention in gene therapy. How to construct stable gene particles was the determining factor. In this study,hybrid multi-shell CaP gene particles were successfully constructed. First,CaP nanoparticles served as a core and were coated with DNA for colloidal stabilization. The ξ-potential of DNA-coated CaP nanoparticles was -15 mV. Then polyethylenimine (PEI) was added and adsorbed outside of the DNA layer due to the electrostatic attraction. The ξ-potential of hybrid multi-shell CaP particles was slightly positive. With addition of PEI,the hybrid multi-shell particles could condense DNA effectively,which was de-termined by ethidium bromide (EtBr) exclusion assay. The hybrid particles were spherical and uniform with diameters of about 150 nm at proper conditions. By simple modification of PEI,the hybrid multi-shell CaP gene particles were successfully constructed. They may have great potential in gene therapy.
基金Project supported by the National "the Tenth Five-Year-Plan" Key Program (No. 2004BA525B08)China and the Key Laboratory of Vegetable Genetics and Physiology, Ministry of Agriculture, China
文摘We examined salt tolerance responsive genes in Pak-choi under salt stress and analyze their potential function. The LRNA differential display was used to screen the transcript derived fragments (TDFs) related to salinity tolerance in tolerant and Loderately tolerant Pak-choi germplasm. Seventy-eight primer combinations generated 101 differential eDNA fragments, which ere divided into 10 expression types. Seven cDNA sequences (GenBank accession Nos. DQ006915-DQ006921) obtained and ,~quenced were highly homologous to some known expression genes or the genes related to the signaling pathways in plants under ifferent abiotic stress.