采用固相法制备手性磷酸锌钠,通过XRD和TEM对所制样品做了表征。结果表明,产物属六方晶系P6_122空间群,且具有多孔结构。电化学方法测试表明,手性多孔磷酸锌钠具有良好的电化学反应活性,多次循环后氧化还原峰基本重合,其放电中值电压随...采用固相法制备手性磷酸锌钠,通过XRD和TEM对所制样品做了表征。结果表明,产物属六方晶系P6_122空间群,且具有多孔结构。电化学方法测试表明,手性多孔磷酸锌钠具有良好的电化学反应活性,多次循环后氧化还原峰基本重合,其放电中值电压随着循环次数的增加而提高,经过100次充放电循环其比容量稳定在170 m A·h/g左右。其良好的电化学稳定性主要得益于磷酸锌钠的多孔结构,提高了电极反应的有效面积,降低了电极极化。展开更多
A new additive of sodium hexametaphosphate (SHMP) was introduced to the paste of zinc electrode, with the purpose of preventing the zinc active materials from agglomerating and improving the stability of batteries. ...A new additive of sodium hexametaphosphate (SHMP) was introduced to the paste of zinc electrode, with the purpose of preventing the zinc active materials from agglomerating and improving the stability of batteries. The properties of the zinc electrodes were characterized by scanning electron microscopy (SEM), constant current charge/discharge measurement, self-discharge test and hydrogen collection experiment. The photographs of zinc electrode show that SHMP can significantly break up the agglomeration, uniforrnize the particle distribution and increase the surface area, which are advantageous to improve the electrochemical performance of zinc electrode. The experimental battery shows a 97 times cycling life and a 30.2% remaining capacity after 4 d storage. The hydrogen collection experimental results indicate that the SHMP can decrease the ratio of hydrogen evolution. Therefore, the corrosion of zinc electrode is suppressed and the charge/discharge efficiency is enhanced.展开更多
文摘采用固相法制备手性磷酸锌钠,通过XRD和TEM对所制样品做了表征。结果表明,产物属六方晶系P6_122空间群,且具有多孔结构。电化学方法测试表明,手性多孔磷酸锌钠具有良好的电化学反应活性,多次循环后氧化还原峰基本重合,其放电中值电压随着循环次数的增加而提高,经过100次充放电循环其比容量稳定在170 m A·h/g左右。其良好的电化学稳定性主要得益于磷酸锌钠的多孔结构,提高了电极反应的有效面积,降低了电极极化。
基金Project(2006BAE03B03) supported by the National Key Technologies Research and Development Program of China
文摘A new additive of sodium hexametaphosphate (SHMP) was introduced to the paste of zinc electrode, with the purpose of preventing the zinc active materials from agglomerating and improving the stability of batteries. The properties of the zinc electrodes were characterized by scanning electron microscopy (SEM), constant current charge/discharge measurement, self-discharge test and hydrogen collection experiment. The photographs of zinc electrode show that SHMP can significantly break up the agglomeration, uniforrnize the particle distribution and increase the surface area, which are advantageous to improve the electrochemical performance of zinc electrode. The experimental battery shows a 97 times cycling life and a 30.2% remaining capacity after 4 d storage. The hydrogen collection experimental results indicate that the SHMP can decrease the ratio of hydrogen evolution. Therefore, the corrosion of zinc electrode is suppressed and the charge/discharge efficiency is enhanced.