The sulfurous water deposit exploitation in volcanic, swamp, or wetland regions, represents an alternative option for potable water supply in cities and communities around the world. However, before its consumption, i...The sulfurous water deposit exploitation in volcanic, swamp, or wetland regions, represents an alternative option for potable water supply in cities and communities around the world. However, before its consumption, it must be treated by the application of physicochemical or biological methods with the ability to separate high contents in sulfates, hydrogen sulphite and sulphides which have laxative, allergic and toxic properties in humans. Conventional methods require the supply of chemical compounds or the adequate control of different parameters such as pH, temperature, etc., and the constant maintenance within their reactors. For these reasons, the systems could have elevated operating costs and require additional steps to enable the treatment of its separated products and the final disposal of its residual waste generated. In this research, compound parabolic collectors are implemented for the use of solar energy radiation, UV-B type, in Solar Advanced Oxidation Processes in H2O2/O3/UVsolar homogeneous phase. Its application during the pre-treatment of four sulfur water wells from the region of Puebla, Mexico, demonstrated its ability to transform their sulfur compounds in sulfates of easy removal by a later stage of reverse osmosis, in an approximately 15 min treatment time process.展开更多
Nowadays, genome editing tools are indispensable for studying gene function in order to increase our knowledge of biochemical processes and disease mechanisms. The extensive availability of mutagenesis and transgenesi...Nowadays, genome editing tools are indispensable for studying gene function in order to increase our knowledge of biochemical processes and disease mechanisms. The extensive availability of mutagenesis and transgenesis tools make Drosophila melanogaster an excellent model organism for geneticists. Early mutagenesis tools relied on chemical or physical methods,ethyl methane sulfonate(EMS) and X-rays respectively, to randomly alter DNA at a nucleotide or chromosomal level. Since the discovery of transposable elements and the availability of the complete fly genome, specific genome editing tools, such as P-elements, zinc-finger nucleases(ZFNs) and transcription activator-like effector nucleases(TALENs), have undergone rapid development. Currently, one of the leading and most effective contemporary tools is the CRISPR-cas9 system made popular because of its low cost, effectiveness, specificity and simplicity of use. This review briefly addresses the most commonly used mutagenesis and transgenesis tools in Drosophila, followed by an in-depth review of the multipurpose CRISPR-Cas9 system and its current applications.展开更多
文摘The sulfurous water deposit exploitation in volcanic, swamp, or wetland regions, represents an alternative option for potable water supply in cities and communities around the world. However, before its consumption, it must be treated by the application of physicochemical or biological methods with the ability to separate high contents in sulfates, hydrogen sulphite and sulphides which have laxative, allergic and toxic properties in humans. Conventional methods require the supply of chemical compounds or the adequate control of different parameters such as pH, temperature, etc., and the constant maintenance within their reactors. For these reasons, the systems could have elevated operating costs and require additional steps to enable the treatment of its separated products and the final disposal of its residual waste generated. In this research, compound parabolic collectors are implemented for the use of solar energy radiation, UV-B type, in Solar Advanced Oxidation Processes in H2O2/O3/UVsolar homogeneous phase. Its application during the pre-treatment of four sulfur water wells from the region of Puebla, Mexico, demonstrated its ability to transform their sulfur compounds in sulfates of easy removal by a later stage of reverse osmosis, in an approximately 15 min treatment time process.
基金supported by the National Key Technology Research and Development Program of the Ministry of Science and Technology of the People’s Republic of China (2015BAI09B03, 2016YFE0113700)the National Natural Science Foundation of China (31371496, 31571320)the National Basic Research Program (2013CB35102)
文摘Nowadays, genome editing tools are indispensable for studying gene function in order to increase our knowledge of biochemical processes and disease mechanisms. The extensive availability of mutagenesis and transgenesis tools make Drosophila melanogaster an excellent model organism for geneticists. Early mutagenesis tools relied on chemical or physical methods,ethyl methane sulfonate(EMS) and X-rays respectively, to randomly alter DNA at a nucleotide or chromosomal level. Since the discovery of transposable elements and the availability of the complete fly genome, specific genome editing tools, such as P-elements, zinc-finger nucleases(ZFNs) and transcription activator-like effector nucleases(TALENs), have undergone rapid development. Currently, one of the leading and most effective contemporary tools is the CRISPR-cas9 system made popular because of its low cost, effectiveness, specificity and simplicity of use. This review briefly addresses the most commonly used mutagenesis and transgenesis tools in Drosophila, followed by an in-depth review of the multipurpose CRISPR-Cas9 system and its current applications.