In Eastern South America, high altitude grasslands represent a mountain system that has a high number of endemic species. However, studies on the ecology of plant communities in these environments remain scarce. We ai...In Eastern South America, high altitude grasslands represent a mountain system that has a high number of endemic species. However, studies on the ecology of plant communities in these environments remain scarce. We aimed to evaluate the patterns of biodiversity and structure of plant communities from rocky outcrops in high altitude grasslands of three areas at the Caparaó National Park, southeastern Brazil, by sampling 300 randomly distributed plots. Then, we compared the floristic composition, relative abundance, and biological and vegetation spectra among areas. We classified species as endemic and non-endemic and verified the occurrence of endangered species. Species richness was evaluated by rarefaction analysis on the sampling units. The importance value and species abundance distribution(SAD) models were assessed. We also performed an indicator species analysis. We sampled 58 species belonging to 49 genera and 32 families. The number of species decreased with increasing altitude, with significant differences being observed among areas regarding richness, abundance, and cover. Of the total number of species, 10 are endemic to the Caparaó National Park and 17 are listed on the Brazilian Red List of endangered species. The dominant families on all peaks were Asteraceae and Poaceae. The SAD models showed lognormal and geometric distributions, corroborating the fact that 10 species that were common to all three areas were also the most dominant ones in the communities and showed the highest importance values, which ranged between 35% and 60%. Indicator species analysis revealed that 28 species(48.27%) were indicators. Of these, 42.85% had maximum specificity, meaning that they occurred only in one area. Thus, the number of species per life form ratio was similar among areas, yet vegetation spectra differed, especially for hemicryptophytes. The altimetric difference among the areas showed to be a very important driver in the community assembly, influencing the evaluated variables, however, other drivers as soil depth, slope and water could also influence the community structure on a smaller and local spatial scale.展开更多
At present, there are no reliable methods to evaluate uncertainty of model representation of magnetic field (MF) in the whole volume of the Earth's magnetosphere. Cosmic ray intensity distribution on the Earth surf...At present, there are no reliable methods to evaluate uncertainty of model representation of magnetic field (MF) in the whole volume of the Earth's magnetosphere. Cosmic ray intensity distribution on the Earth surface contains information on the space distribution of magnetospheric MF through which charged particles propagate. Feasibility and limitations of cosmic ray data to be a tool for the validation of magnetospheric MF models have been analyzed. The authors' approach is based on the fact that time variations of magnetospheric cosmic ray are related to the changes in geomagnetic cutoff rigidities. The obtained cutoff rigidity changes by the trajectory tracing method in the MF model with those obtained on the base of experimental cosmic ray data have also been compared. The obtained results have shown that cosmic ray data can be successfully used for validation of models in presenting the dynamic structure of magnetospheric MF at mid latitudes.展开更多
Accuracy of simulated permeability can be improved using soft data during the process of simulation. Integrating soft data with hard data, a method based on COSISIM (sequential indicator cosimulation) was proposed t...Accuracy of simulated permeability can be improved using soft data during the process of simulation. Integrating soft data with hard data, a method based on COSISIM (sequential indicator cosimulation) was proposed to reconstruct permeability. The algorithm COSISIM extends the SISIM (sequential indicator simulation) algorithm to handle secondary data. At the difference of SISIM, data must already be an indicator-coded prior to using COSISIM. The soft data were integrated with hard data using the Markov-Bayes algorithm and must be coded into indicators before they are used. This method was tested on a regional simulation of permeability. The simulated results and the original distribution of permeability were compared. The experimental results demonstrate that this method is practical.展开更多
The energy saving performance of energy efficient windows has strong dependence on window direction. Transmitted insolation level definitely affected the cooling and heating load. Simple simulation on the decrement of...The energy saving performance of energy efficient windows has strong dependence on window direction. Transmitted insolation level definitely affected the cooling and heating load. Simple simulation on the decrement of cooling load and the increment of heating load of a shading window compared with those of a transparent window show the prospect of energy saving effect clearly.From southeastward to southwestward, shading window even enlarges total heating and cooling loads when the thermal transmission is the same. However, if the shading coefficient of window is switched between summer and winter, total cooling and heating load can be reduced. This result clarifies the importance of "smart window".展开更多
The Hadley circulation is one of the most important atmospheric circulations.Widening of the Hadley circulation has drawn extensive studies in the past decade.The key concern is that widening of the Hadley circulation...The Hadley circulation is one of the most important atmospheric circulations.Widening of the Hadley circulation has drawn extensive studies in the past decade.The key concern is that widening of the Hadley circulation would cause poleward shift of the subtropical dry zone.Various metrics have been applied to measure the widening of the tropics.What are responsible for the observed widening trends of the Hadley circulation? How anthropogenic and natural forcings caused the widening? How the widening results in regional climatic effects? These are the major questions in studing the widening of the Hadley circulation.While both observations and simulations all show widening of the Hadley circulation in the past few decades,there are no general agreements of changes in the strength of the Hadley circulation.Although some reanalysis datasets show strengthening of the Hadley circulation,it was shown that the strengthening trend could be artificial,and simulations show weakening of the Hadley circulation for global greenhouse warming.In the present paper,we shall briefly review the major progresses of studies in trends in width and strength of the Hadley circulation.We address answers to these questions,clarify inconsistent results,and propose ideas for future studies.展开更多
This paper presents the development of a new nonlinear representation by exploiting the multimodel approach and the new linear representation ARX-Laguerre for each operating region. The resulting multimodel, entitled ...This paper presents the development of a new nonlinear representation by exploiting the multimodel approach and the new linear representation ARX-Laguerre for each operating region. The resulting multimodel, entitled ARX-Laguerre multimodel, is characterized by the parameter number reduction with a recursive representation. However, a significant reduction of this multimodel is subject to an optimal choice of Laguerre poles characterizing each local linear model ARX-Laguerre. Therefore, the authors propose an optimization algorithm to estimate, from input/output measurements, the optimal values of Laguerre poles. The ARX-Laguerre multimodel as well as the proposed optimization algorithm are tested on a continuous stirred tank reactor system (CSTR). Moreover, the authors take into account a practical validation on an experimental communicating two tank system (CTTS).展开更多
We examined sexual size dimorphism (SSD), mating pattem, fertilization efficiency and female reproductive traits in two bufonid toads (Bufo gargarizans and Duttaphrynus melanostictus) to test the idea that importa...We examined sexual size dimorphism (SSD), mating pattem, fertilization efficiency and female reproductive traits in two bufonid toads (Bufo gargarizans and Duttaphrynus melanostictus) to test the idea that importance of male body size for egg fertilization success depends on the mating pattern. Female-biased SSD was evident only in D. melanostictus. Female B. gar- garizans laid fewer larger eggs nearly three months earlier than did female D. melanostictus. Fertilization efficieneies on average were higher in B. gargarizans (95%) than in D. melanostictus (91%). Though differing in the degree of SSD, body size, breeding season, clutch size, egg size and fertilization efficiency, the two toads were similar in four aspects: (1) both showed size-assortative mating; (2) females did not tradeoff egg size against egg number; (3) male size, clutch size and clutch dry mass were greater in male-larger than in female-larger pairs after accounting for female snout-vent length (SVL); and (4) the ratio of male to female SVL did not affect fertilization efficiency. Our data show that: (1) a female preference for large males is likely not important in terms of egg fertilization success; (2) a male preference for large females is likely important because larger females are more fecund; and (3) size-assortative mating arises from a male preference for large females. Our study demonstrates that male size is not always important for egg fertilization success in anurans that show size-assortative mating.展开更多
The nature of brain interstitial fluid (ISF) has long been a subject of controversy. Most of the previous studies on brain ISF were carded out in vitro. In the present study, a novel method was developed to characte...The nature of brain interstitial fluid (ISF) has long been a subject of controversy. Most of the previous studies on brain ISF were carded out in vitro. In the present study, a novel method was developed to characterize ISF in the living rat brain by magnetic resonance (MR) imaging using gadolinium-diethylenetriaminepentaacetic acid (Gd-DTPA) as a tracer. Sprague Dawley rats (n=8) were subjected to MR scanning before and after the introduction of Gd-DTPA into the caudate nucleus. A one-way drainage of brain ISF was demonstrated on the dynamic MR images. According to the traditional diffusion model, the diffusion and clearance rate constants of the tracer within brain extracellular space (ECS) were derived as (3.38±1.07)×10^-4 mm2 s^-1 and (7.60±4.18)×10^-5 s^-1. Both diffusion and bulk flow contributed to the drainage of ISF from the caudate nucleus, which demonstrated an ISF-cerebrospinal fluid confluence in the subarachnoid space at the lateral and ventral surface of the brain cortex at 3 h after the injection. By using this newly developed method, the brain ECS and ISF can be quantitatively measured simultaneously in the living brain, which will enhance the understanding of ISF and improve the efficiency of drug therapy via the brain interstitium.展开更多
Due to continuous process scaling, process, voltage, and temperature (PVT) parameter variations have become one of the most problematic issues in circuit design. The resulting correlations among performance metrics ...Due to continuous process scaling, process, voltage, and temperature (PVT) parameter variations have become one of the most problematic issues in circuit design. The resulting correlations among performance metrics lead to a significant parametric yield loss. Previous algorithms on parametric yield prediction are limited to predicting a single-parametric yield or performing balanced optimization for several single-parametric yields. Consequently, these methods fail to predict the multiparametric yield that optimizes multiple performance metrics simultaneously, which may result in significant accuracy loss. In this paper we suggest an efficient multi-parametric yield prediction framework, in which multiple performance metrics are considered as simultaneous constraint conditions for parametric yield prediction, to maintain the correlations among metrics. First, the framework models the performance metrics in terms of PVT parameter variations by using the adaptive elastic net (AEN) method. Then the parametric yield for a single performance metric can be predicted through the computation of the cumulative distribution function (CDF) based on the multiplication theorem and the Markov chain Monte Carlo (MCMC) method. Finally, a copula-based parametric yield prediction procedure has been developed to solve the multi-parametric yield prediction problem, and to generate an accurate yield estimate. Experimental results demonstrate that the proposed multi-parametric yield prediction framework is able to provide the designer with either an accurate value for parametric yield under specific performance limits, or a multi-parametric yield surface under all ranges of performance limits.展开更多
A series of large-scale molecular dynamics(MD) simulations has been performed to study the effects of grain size and ligament diameter on the mechanical properties of nanocrystalline nanoporous gold. Such simulations ...A series of large-scale molecular dynamics(MD) simulations has been performed to study the effects of grain size and ligament diameter on the mechanical properties of nanocrystalline nanoporous gold. Such simulations indicate that the principal deformation mechanism is a combination of grain boundary sliding, grain rotation and dislocation movement. The results of uniaxial tensile tests reveal the presence of a reverse Hall-Petch relation between strength and nominal grain size, rather than the conventional Hall-Petch relationship in the present range of nominal grain size(7.9–52.7 nm). An increase of flow stress may possibly attribute to the lower total proportion of grain boundary sliding and grain rotation in the deformation of samples with larger grain size. The Young's modulus shows a linear relation with the reciprocal of nominal grain size, which depends largely on the volume fraction of grain boundaries and thus decreasing grain size leads to relatively lower Young's modulus. MD simulations on samples with ligament diameter ranging from 4.07 to 8.10 nm are also carried out and results show that the increasing ligament diameter resulted in decreased flow stress and increased Young's modulus.展开更多
The nonsymmetry and antipacking pattern representation model (NAM), inspired by the concept of the packing problem, uses a set of subpatterns to represent an original pattern. The NAM is a promising method for image...The nonsymmetry and antipacking pattern representation model (NAM), inspired by the concept of the packing problem, uses a set of subpatterns to represent an original pattern. The NAM is a promising method for image representation because of its ability to focus on the interesting subsets of an image. In this paper, we develop a new method for gray-scale image representation based on NAM, called NAM-structured plane decomposition (NAMPD), in which each subpattern is associated with a rectangular region in the image. The luminance function of pixels in this region is approximated by an oblique plane model. Then, we propose a new and fast edge detection algorithm based on NAMPD. The theoretical analyses and experimental results presented in this paper show that the edge detection algorithm using NAMPD performs faster than the classical ones because it permits the execution of operations on subpatterns instead of pixels.展开更多
文摘In Eastern South America, high altitude grasslands represent a mountain system that has a high number of endemic species. However, studies on the ecology of plant communities in these environments remain scarce. We aimed to evaluate the patterns of biodiversity and structure of plant communities from rocky outcrops in high altitude grasslands of three areas at the Caparaó National Park, southeastern Brazil, by sampling 300 randomly distributed plots. Then, we compared the floristic composition, relative abundance, and biological and vegetation spectra among areas. We classified species as endemic and non-endemic and verified the occurrence of endangered species. Species richness was evaluated by rarefaction analysis on the sampling units. The importance value and species abundance distribution(SAD) models were assessed. We also performed an indicator species analysis. We sampled 58 species belonging to 49 genera and 32 families. The number of species decreased with increasing altitude, with significant differences being observed among areas regarding richness, abundance, and cover. Of the total number of species, 10 are endemic to the Caparaó National Park and 17 are listed on the Brazilian Red List of endangered species. The dominant families on all peaks were Asteraceae and Poaceae. The SAD models showed lognormal and geometric distributions, corroborating the fact that 10 species that were common to all three areas were also the most dominant ones in the communities and showed the highest importance values, which ranged between 35% and 60%. Indicator species analysis revealed that 28 species(48.27%) were indicators. Of these, 42.85% had maximum specificity, meaning that they occurred only in one area. Thus, the number of species per life form ratio was similar among areas, yet vegetation spectra differed, especially for hemicryptophytes. The altimetric difference among the areas showed to be a very important driver in the community assembly, influencing the evaluated variables, however, other drivers as soil depth, slope and water could also influence the community structure on a smaller and local spatial scale.
文摘At present, there are no reliable methods to evaluate uncertainty of model representation of magnetic field (MF) in the whole volume of the Earth's magnetosphere. Cosmic ray intensity distribution on the Earth surface contains information on the space distribution of magnetospheric MF through which charged particles propagate. Feasibility and limitations of cosmic ray data to be a tool for the validation of magnetospheric MF models have been analyzed. The authors' approach is based on the fact that time variations of magnetospheric cosmic ray are related to the changes in geomagnetic cutoff rigidities. The obtained cutoff rigidity changes by the trajectory tracing method in the MF model with those obtained on the base of experimental cosmic ray data have also been compared. The obtained results have shown that cosmic ray data can be successfully used for validation of models in presenting the dynamic structure of magnetospheric MF at mid latitudes.
基金Supported by the National Natural Science Foundation of China(50874005)
文摘Accuracy of simulated permeability can be improved using soft data during the process of simulation. Integrating soft data with hard data, a method based on COSISIM (sequential indicator cosimulation) was proposed to reconstruct permeability. The algorithm COSISIM extends the SISIM (sequential indicator simulation) algorithm to handle secondary data. At the difference of SISIM, data must already be an indicator-coded prior to using COSISIM. The soft data were integrated with hard data using the Markov-Bayes algorithm and must be coded into indicators before they are used. This method was tested on a regional simulation of permeability. The simulated results and the original distribution of permeability were compared. The experimental results demonstrate that this method is practical.
文摘The energy saving performance of energy efficient windows has strong dependence on window direction. Transmitted insolation level definitely affected the cooling and heating load. Simple simulation on the decrement of cooling load and the increment of heating load of a shading window compared with those of a transparent window show the prospect of energy saving effect clearly.From southeastward to southwestward, shading window even enlarges total heating and cooling loads when the thermal transmission is the same. However, if the shading coefficient of window is switched between summer and winter, total cooling and heating load can be reduced. This result clarifies the importance of "smart window".
基金supported by the National Natural Science Foundation of China(41530423,and 41761144072)
文摘The Hadley circulation is one of the most important atmospheric circulations.Widening of the Hadley circulation has drawn extensive studies in the past decade.The key concern is that widening of the Hadley circulation would cause poleward shift of the subtropical dry zone.Various metrics have been applied to measure the widening of the tropics.What are responsible for the observed widening trends of the Hadley circulation? How anthropogenic and natural forcings caused the widening? How the widening results in regional climatic effects? These are the major questions in studing the widening of the Hadley circulation.While both observations and simulations all show widening of the Hadley circulation in the past few decades,there are no general agreements of changes in the strength of the Hadley circulation.Although some reanalysis datasets show strengthening of the Hadley circulation,it was shown that the strengthening trend could be artificial,and simulations show weakening of the Hadley circulation for global greenhouse warming.In the present paper,we shall briefly review the major progresses of studies in trends in width and strength of the Hadley circulation.We address answers to these questions,clarify inconsistent results,and propose ideas for future studies.
文摘This paper presents the development of a new nonlinear representation by exploiting the multimodel approach and the new linear representation ARX-Laguerre for each operating region. The resulting multimodel, entitled ARX-Laguerre multimodel, is characterized by the parameter number reduction with a recursive representation. However, a significant reduction of this multimodel is subject to an optimal choice of Laguerre poles characterizing each local linear model ARX-Laguerre. Therefore, the authors propose an optimization algorithm to estimate, from input/output measurements, the optimal values of Laguerre poles. The ARX-Laguerre multimodel as well as the proposed optimization algorithm are tested on a continuous stirred tank reactor system (CSTR). Moreover, the authors take into account a practical validation on an experimental communicating two tank system (CTTS).
文摘We examined sexual size dimorphism (SSD), mating pattem, fertilization efficiency and female reproductive traits in two bufonid toads (Bufo gargarizans and Duttaphrynus melanostictus) to test the idea that importance of male body size for egg fertilization success depends on the mating pattern. Female-biased SSD was evident only in D. melanostictus. Female B. gar- garizans laid fewer larger eggs nearly three months earlier than did female D. melanostictus. Fertilization efficieneies on average were higher in B. gargarizans (95%) than in D. melanostictus (91%). Though differing in the degree of SSD, body size, breeding season, clutch size, egg size and fertilization efficiency, the two toads were similar in four aspects: (1) both showed size-assortative mating; (2) females did not tradeoff egg size against egg number; (3) male size, clutch size and clutch dry mass were greater in male-larger than in female-larger pairs after accounting for female snout-vent length (SVL); and (4) the ratio of male to female SVL did not affect fertilization efficiency. Our data show that: (1) a female preference for large males is likely not important in terms of egg fertilization success; (2) a male preference for large females is likely important because larger females are more fecund; and (3) size-assortative mating arises from a male preference for large females. Our study demonstrates that male size is not always important for egg fertilization success in anurans that show size-assortative mating.
基金supported by the National Natural Science Foundation of China (Grant Nos. 30972811, 81171080 and 81071148)the Twelfth Five-year Plan for National Science and Technology of China (Grant No.2012BAI15B009)
文摘The nature of brain interstitial fluid (ISF) has long been a subject of controversy. Most of the previous studies on brain ISF were carded out in vitro. In the present study, a novel method was developed to characterize ISF in the living rat brain by magnetic resonance (MR) imaging using gadolinium-diethylenetriaminepentaacetic acid (Gd-DTPA) as a tracer. Sprague Dawley rats (n=8) were subjected to MR scanning before and after the introduction of Gd-DTPA into the caudate nucleus. A one-way drainage of brain ISF was demonstrated on the dynamic MR images. According to the traditional diffusion model, the diffusion and clearance rate constants of the tracer within brain extracellular space (ECS) were derived as (3.38±1.07)×10^-4 mm2 s^-1 and (7.60±4.18)×10^-5 s^-1. Both diffusion and bulk flow contributed to the drainage of ISF from the caudate nucleus, which demonstrated an ISF-cerebrospinal fluid confluence in the subarachnoid space at the lateral and ventral surface of the brain cortex at 3 h after the injection. By using this newly developed method, the brain ECS and ISF can be quantitatively measured simultaneously in the living brain, which will enhance the understanding of ISF and improve the efficiency of drug therapy via the brain interstitium.
基金Project supposed by the Natural Science Foundation of Jiangsu Province (Nos. BK20161072, BK20150785, and BK20130877) and the National Natural Science Foundation of China (Nos. 61502234 and 71301081)
文摘Due to continuous process scaling, process, voltage, and temperature (PVT) parameter variations have become one of the most problematic issues in circuit design. The resulting correlations among performance metrics lead to a significant parametric yield loss. Previous algorithms on parametric yield prediction are limited to predicting a single-parametric yield or performing balanced optimization for several single-parametric yields. Consequently, these methods fail to predict the multiparametric yield that optimizes multiple performance metrics simultaneously, which may result in significant accuracy loss. In this paper we suggest an efficient multi-parametric yield prediction framework, in which multiple performance metrics are considered as simultaneous constraint conditions for parametric yield prediction, to maintain the correlations among metrics. First, the framework models the performance metrics in terms of PVT parameter variations by using the adaptive elastic net (AEN) method. Then the parametric yield for a single performance metric can be predicted through the computation of the cumulative distribution function (CDF) based on the multiplication theorem and the Markov chain Monte Carlo (MCMC) method. Finally, a copula-based parametric yield prediction procedure has been developed to solve the multi-parametric yield prediction problem, and to generate an accurate yield estimate. Experimental results demonstrate that the proposed multi-parametric yield prediction framework is able to provide the designer with either an accurate value for parametric yield under specific performance limits, or a multi-parametric yield surface under all ranges of performance limits.
基金supported by the National Natural Science Foundation of China(Grant Nos.11102140&51575404)
文摘A series of large-scale molecular dynamics(MD) simulations has been performed to study the effects of grain size and ligament diameter on the mechanical properties of nanocrystalline nanoporous gold. Such simulations indicate that the principal deformation mechanism is a combination of grain boundary sliding, grain rotation and dislocation movement. The results of uniaxial tensile tests reveal the presence of a reverse Hall-Petch relation between strength and nominal grain size, rather than the conventional Hall-Petch relationship in the present range of nominal grain size(7.9–52.7 nm). An increase of flow stress may possibly attribute to the lower total proportion of grain boundary sliding and grain rotation in the deformation of samples with larger grain size. The Young's modulus shows a linear relation with the reciprocal of nominal grain size, which depends largely on the volume fraction of grain boundaries and thus decreasing grain size leads to relatively lower Young's modulus. MD simulations on samples with ligament diameter ranging from 4.07 to 8.10 nm are also carried out and results show that the increasing ligament diameter resulted in decreased flow stress and increased Young's modulus.
基金Supported by the National High Technology Research and Development Program of China (No. 2006AA04Z211)
文摘The nonsymmetry and antipacking pattern representation model (NAM), inspired by the concept of the packing problem, uses a set of subpatterns to represent an original pattern. The NAM is a promising method for image representation because of its ability to focus on the interesting subsets of an image. In this paper, we develop a new method for gray-scale image representation based on NAM, called NAM-structured plane decomposition (NAMPD), in which each subpattern is associated with a rectangular region in the image. The luminance function of pixels in this region is approximated by an oblique plane model. Then, we propose a new and fast edge detection algorithm based on NAMPD. The theoretical analyses and experimental results presented in this paper show that the edge detection algorithm using NAMPD performs faster than the classical ones because it permits the execution of operations on subpatterns instead of pixels.