针对现有动态社交网络隐私保护中存在的添加噪声尺度过大以及迭代过程中误差积累的问题,提出一种面向部分图更新的动态社交网络隐私发布方法 PGU-DNDP(Partial Graph Updating in Dynamic social Network based on Differential Privacy...针对现有动态社交网络隐私保护中存在的添加噪声尺度过大以及迭代过程中误差积累的问题,提出一种面向部分图更新的动态社交网络隐私发布方法 PGU-DNDP(Partial Graph Updating in Dynamic social Network based on Differential Privacy)。首先,通过时间权衡的动态社区发现算法收集网络快照图集合中的更新序列;其次,使用静态图发布方法得到初始生成图;最后,基于上一时刻的生成图和当前时刻更新序列完成部分图更新。部分更新的方法可以降低全图扰动带来的过量噪声并优化时间成本,避免合成图密集情况发生。此外,在部分更新中设计一种边缘更新策略,结合自适应的扰动和下采样机制,通过隐私放大减小迭代过程中的累积误差,从而有效提高合成图的精度。在3个合成数据集和2个真实的动态数据集上的实验结果表明,PGU-DNDP能够在保证动态社交网络隐私需求的同时,比主流的静态图生成方法 PrivGraph(differentially Private Graph data publication by exploiting community information)保留更高的数据效用。展开更多
以往对影响力最大化问题的研究大多是基于静态图进行优化研究,但在现实中,网络数据量随着时间不断增加,系统不可能实时获取到整个网络中节点之间的连接情况。在传统MaxG探测模型的基础上,采用固定邻域规模和节点邻域层级相结合的方式计...以往对影响力最大化问题的研究大多是基于静态图进行优化研究,但在现实中,网络数据量随着时间不断增加,系统不可能实时获取到整个网络中节点之间的连接情况。在传统MaxG探测模型的基础上,采用固定邻域规模和节点邻域层级相结合的方式计算节点影响力大小,提出了新的动态网络探测算法RAS-MaxG(regular area scale-MaxG),解决了传统探测算法由于采用度来衡量节点影响力值所导致的节点之间区分性差的问题。最后通过在真实数据集上的实验对比,验证了所提算法在最终影响力覆盖范围方面具有更好的性能表现。展开更多
文摘针对现有动态社交网络隐私保护中存在的添加噪声尺度过大以及迭代过程中误差积累的问题,提出一种面向部分图更新的动态社交网络隐私发布方法 PGU-DNDP(Partial Graph Updating in Dynamic social Network based on Differential Privacy)。首先,通过时间权衡的动态社区发现算法收集网络快照图集合中的更新序列;其次,使用静态图发布方法得到初始生成图;最后,基于上一时刻的生成图和当前时刻更新序列完成部分图更新。部分更新的方法可以降低全图扰动带来的过量噪声并优化时间成本,避免合成图密集情况发生。此外,在部分更新中设计一种边缘更新策略,结合自适应的扰动和下采样机制,通过隐私放大减小迭代过程中的累积误差,从而有效提高合成图的精度。在3个合成数据集和2个真实的动态数据集上的实验结果表明,PGU-DNDP能够在保证动态社交网络隐私需求的同时,比主流的静态图生成方法 PrivGraph(differentially Private Graph data publication by exploiting community information)保留更高的数据效用。
文摘以往对影响力最大化问题的研究大多是基于静态图进行优化研究,但在现实中,网络数据量随着时间不断增加,系统不可能实时获取到整个网络中节点之间的连接情况。在传统MaxG探测模型的基础上,采用固定邻域规模和节点邻域层级相结合的方式计算节点影响力大小,提出了新的动态网络探测算法RAS-MaxG(regular area scale-MaxG),解决了传统探测算法由于采用度来衡量节点影响力值所导致的节点之间区分性差的问题。最后通过在真实数据集上的实验对比,验证了所提算法在最终影响力覆盖范围方面具有更好的性能表现。