-
题名一种基于子空间学习的图像标签推荐方法
被引量:1
- 1
-
-
作者
祁超
-
机构
南京理工大学计算机科学与工程学院
-
出处
《计算机与现代化》
2016年第3期68-73,共6页
-
文摘
以Flickr和Picasa为代表的社会化图像分享网站允许用户对图像使用标签进行标注,帮助用户更加方便高效地组织和检索图像资源。为了能使用户对所标注的图像提供高质量的标签,自动化图像标签推荐系统成了近年来的热门研究领域。以往的图像标签推荐系统在解决标签推荐冷启动问题上只是简单地利用标签频率信息或者图像的视觉特征相似性进行标签推荐,忽略了图像视觉内容和标签内容之间的关系,往往导致标签推荐结果不是特别理想。本文提出一种新的图像标签推荐方法,该方法利用矩阵分解算法从训练数据集中学习,得到一个图像视觉特征和标签内容语义共享的隐式子空间。对于一幅未打任何标签的新图像,可以利用训练得到的线性转换矩阵将其视觉特征向量映射到隐式子空间中,然后计算得到与各个标签的关联程度进行推荐。本文提出的方法在NUS-WIDE的数据集上进行验证,实验结果比现有代表性方法有大幅提高,表明了该方法的有效性。
-
关键词
社会化标签
社会化图片
子空间学习
推荐系统
冷启动
-
Keywords
social tag
social image
subspace learning
recommender system
cold start
-
分类号
TP391
[自动化与计算机技术—计算机应用技术]
-