Zoige Wetland is one of the largest plateau wetlands in the world. This paper provides a dynamic analysis of spatial and temporal patterns of the wetland in Zoige, Eastern Qinghai-Tibetan Plateau, supported by ERDAS8....Zoige Wetland is one of the largest plateau wetlands in the world. This paper provides a dynamic analysis of spatial and temporal patterns of the wetland in Zoige, Eastern Qinghai-Tibetan Plateau, supported by ERDAS8.7 and ArcGIS9.0. It is the first comparative analysis of a system of rapidly changing wetland with landscape patterns in Zoige, using 3 classified landsat Thematic Mapper images of 1977, 1994 and 2001. The classified images were used to generate wetland distributing maps, and shape index (S), diversity index (H), dominance index (D), evenness index (E), fragmentation index (F) and fractal dimension (Fd) were calculated and analyzed spatiotemporally across pure grazing area in Zoige for each landscape type and in different periods (before 1977, during 1977-1994 and 1994-2001), as well as the driving forces of natural and anthropogenic. The study shows that for a comprehensive understanding of the shapes and trajectories of the shrinking and desertificated land expansion of the wetland, a spatiotemporal landscape metrics analysis in different periods is an improvement than only with landscape changing rates. This type of analysis can also be used to infer underlying social, economic, and political processes that drive the observed wetland forms. The results indicate that wetland patterns can be changed over relatively short periods of time. The total area of lake reduced by 164.86 km^2, grassland extended by 141.74 km^2, semi-marsh extended by 105.94 km^2, marsh reduced by 86.00 km^2 the number of landscape patches reduced by 56, and their average area decreased by 2.68 km^2, the successions within lake, marsh, semi-marsh and grassland were found obviously. S decreased stepwise: D and F increased but H decreased: The changing rate after 1994 was 2.3 to 2.9 times greater than that before. The change of the wetland landscape patterns resulted in the interaction between socio-ceenomic and natural forces of positive and negative aspects; and natural factors affected as assistant aspect. Some important human activities in this period led to the change of the landscape patterns in this region directly. Some measurements made by government and NGO delayed the converting process partly.展开更多
Based on remote sensing and GIS techniques, land use maps in 2000, 2005 and 2010 in China′s coastal zone were produced, and structural raster data of land use were further generated to calculate land use intensity co...Based on remote sensing and GIS techniques, land use maps in 2000, 2005 and 2010 in China′s coastal zone were produced, and structural raster data of land use were further generated to calculate land use intensity comprehensive index(LUICI) for analyzing land use spatial-temporal characteristics at 1 km scale. Results show that: 1) from the perspective of spatial patterns of landforms at a macro scale, there is a significant difference in land use intensity between the north and the south of China′s coastal zone. Hotspots of changes mainly concentrated in metropolitan areas, estuaries and coastal wetlands; 2) elevation is an important factor that controlling land use spatial patterns at local scale. Land use intensity is much higher within areas below the elevation of 400 m and it decreased significantly as the elevation increasing; 3) there is a significant land-ocean gradient for land use intensity, which is low in island and near-shore areas, but high in the regions that 4–30 km far away the coastline because of much intensive human activities; however, in recent decades land use intensity had been promoted significantly in low near-shore area due to extensive sea reclamations; 4) significant differences of land use intensity were also found among provincial administrative units. A rising trend of land use intensity was found in provincial-level administrative units from 2000 to 2010. To sum up, elevation, land-ocean gradient, socio-economic status and policy are all influencing factors to the spatial patterns and temporal variations of land use intensity in China′s coastal zone.展开更多
Using data from the Economic Advisory Center of the State Information Center(SIC), we examined the spatial patterns of car sales in China at the prefectural level in 2012. We first analyzed the spatial distributions o...Using data from the Economic Advisory Center of the State Information Center(SIC), we examined the spatial patterns of car sales in China at the prefectural level in 2012. We first analyzed the spatial distributions of car sales of different kinds of automakers(foreign automakers, Sino-foreign joint automakers, and Chinese automakers), and then identified spatial clusters using the local Moran's indexes. Location quotient analysis was applied to examine the relative advantage of each type of automaker in the local markets. To explain the variations of car sales across cities, we collected several socioeconomic variables and conducted regression analyses. Further, factor analysis was used to extract independent variables to avoid the problem of multicollinearity. By incorporating a spatial lag or spatial error in the models, we calibrated our spatial regression models to address the spatial dependence problem. The analytical results show that car sales varied significantly across cities in China, and most of the cities with higher car sales were the developed cities. Different automakers exhibit diverse spatial patterns in terms of car sales volume, spatial clusters, and location quotients. The scale and incomes factor were extracted and verified as the two most significant and positive factors that shape the spatial distributions of car sales, and together with the spatial effect, explained most of the variations of car sales across cities.展开更多
基金supported by China Scholarship, the Chinese Academy of Sciences (KSCXI-07, KSCX2-01-09)the Ministry of Science & Technology of China (2004BA606A-05)Sichuan provincial training foundation for Science & Technology leader ,Sichuan youth foundation.
文摘Zoige Wetland is one of the largest plateau wetlands in the world. This paper provides a dynamic analysis of spatial and temporal patterns of the wetland in Zoige, Eastern Qinghai-Tibetan Plateau, supported by ERDAS8.7 and ArcGIS9.0. It is the first comparative analysis of a system of rapidly changing wetland with landscape patterns in Zoige, using 3 classified landsat Thematic Mapper images of 1977, 1994 and 2001. The classified images were used to generate wetland distributing maps, and shape index (S), diversity index (H), dominance index (D), evenness index (E), fragmentation index (F) and fractal dimension (Fd) were calculated and analyzed spatiotemporally across pure grazing area in Zoige for each landscape type and in different periods (before 1977, during 1977-1994 and 1994-2001), as well as the driving forces of natural and anthropogenic. The study shows that for a comprehensive understanding of the shapes and trajectories of the shrinking and desertificated land expansion of the wetland, a spatiotemporal landscape metrics analysis in different periods is an improvement than only with landscape changing rates. This type of analysis can also be used to infer underlying social, economic, and political processes that drive the observed wetland forms. The results indicate that wetland patterns can be changed over relatively short periods of time. The total area of lake reduced by 164.86 km^2, grassland extended by 141.74 km^2, semi-marsh extended by 105.94 km^2, marsh reduced by 86.00 km^2 the number of landscape patches reduced by 56, and their average area decreased by 2.68 km^2, the successions within lake, marsh, semi-marsh and grassland were found obviously. S decreased stepwise: D and F increased but H decreased: The changing rate after 1994 was 2.3 to 2.9 times greater than that before. The change of the wetland landscape patterns resulted in the interaction between socio-ceenomic and natural forces of positive and negative aspects; and natural factors affected as assistant aspect. Some important human activities in this period led to the change of the landscape patterns in this region directly. Some measurements made by government and NGO delayed the converting process partly.
基金Under the auspices of Strategic Priority Research Program of Chinese Academy of Sciences(No.XDA05130703)Knowledge Innovation Program of Chinese Academy of Sciences(No.KZCX2-YW-224)2020-Planning Project of Yantai Institute of Coastal Zone Research of Chinese Academy of Sciences(No.Y254021031-6)
文摘Based on remote sensing and GIS techniques, land use maps in 2000, 2005 and 2010 in China′s coastal zone were produced, and structural raster data of land use were further generated to calculate land use intensity comprehensive index(LUICI) for analyzing land use spatial-temporal characteristics at 1 km scale. Results show that: 1) from the perspective of spatial patterns of landforms at a macro scale, there is a significant difference in land use intensity between the north and the south of China′s coastal zone. Hotspots of changes mainly concentrated in metropolitan areas, estuaries and coastal wetlands; 2) elevation is an important factor that controlling land use spatial patterns at local scale. Land use intensity is much higher within areas below the elevation of 400 m and it decreased significantly as the elevation increasing; 3) there is a significant land-ocean gradient for land use intensity, which is low in island and near-shore areas, but high in the regions that 4–30 km far away the coastline because of much intensive human activities; however, in recent decades land use intensity had been promoted significantly in low near-shore area due to extensive sea reclamations; 4) significant differences of land use intensity were also found among provincial administrative units. A rising trend of land use intensity was found in provincial-level administrative units from 2000 to 2010. To sum up, elevation, land-ocean gradient, socio-economic status and policy are all influencing factors to the spatial patterns and temporal variations of land use intensity in China′s coastal zone.
基金Under the auspices of National Natural Science Foundation of China(No.41301143)
文摘Using data from the Economic Advisory Center of the State Information Center(SIC), we examined the spatial patterns of car sales in China at the prefectural level in 2012. We first analyzed the spatial distributions of car sales of different kinds of automakers(foreign automakers, Sino-foreign joint automakers, and Chinese automakers), and then identified spatial clusters using the local Moran's indexes. Location quotient analysis was applied to examine the relative advantage of each type of automaker in the local markets. To explain the variations of car sales across cities, we collected several socioeconomic variables and conducted regression analyses. Further, factor analysis was used to extract independent variables to avoid the problem of multicollinearity. By incorporating a spatial lag or spatial error in the models, we calibrated our spatial regression models to address the spatial dependence problem. The analytical results show that car sales varied significantly across cities in China, and most of the cities with higher car sales were the developed cities. Different automakers exhibit diverse spatial patterns in terms of car sales volume, spatial clusters, and location quotients. The scale and incomes factor were extracted and verified as the two most significant and positive factors that shape the spatial distributions of car sales, and together with the spatial effect, explained most of the variations of car sales across cities.