当前,民航旅客价值分析把每一个旅客当作彼此不相关联的实体,忽略了旅客间存在的关系。针对这种情况,提出从旅客间的相互影响角度出发,量化这种影响的强弱。基于PNR(Passenger Name Record)数据构建民航旅客社会网络,从系统科学、网络...当前,民航旅客价值分析把每一个旅客当作彼此不相关联的实体,忽略了旅客间存在的关系。针对这种情况,提出从旅客间的相互影响角度出发,量化这种影响的强弱。基于PNR(Passenger Name Record)数据构建民航旅客社会网络,从系统科学、网络关系和互联网搜索这三个角度研究社会网络中节点重要性的评估算法,并把这三种算法应用在民航旅客社会网络中。最后,通过F-度量方法对这三种算法计算出的重要节点进行相似性比较。实验结果表明,该方法能够有效地得到民航旅客社会网络中的重要旅客。展开更多
针对现有复杂网络节点重要性排序方法无法处理目标体系网络节点异质连边有向有权的难题,提出一种面向目标体系网络的节点重要性排序方法。利用K-shell算法计算网络节点的初始重要值,并在PageRank算法的节点重要性传递中考虑重要性分配...针对现有复杂网络节点重要性排序方法无法处理目标体系网络节点异质连边有向有权的难题,提出一种面向目标体系网络的节点重要性排序方法。利用K-shell算法计算网络节点的初始重要值,并在PageRank算法的节点重要性传递中考虑重要性分配趋强的特点和连边权重,提出K-shell和PageRank扩展(Extended K-shell and PageRank,EKSPR)算法,并给出EKSPR算法的收敛性证明,进行了作战仿真实验验证和算例对比分析。实验结果表明,EKSPR算法相对于K-shell算法和PageRank算法更适用于处理目标体系网络节点重要性排序,并且效率优于均值EKSPR算法。展开更多
近年来,高质量社区的挖掘和发现已经成为社会网络研究一个热点.其中,基于标签传播的社区挖掘算法(Label Propagation Algorithm,简称LPA)由于具有近似线性时间复杂度且无须预先定义目标函数和社区数量等优点而得到广泛关注.但是,LPA算...近年来,高质量社区的挖掘和发现已经成为社会网络研究一个热点.其中,基于标签传播的社区挖掘算法(Label Propagation Algorithm,简称LPA)由于具有近似线性时间复杂度且无须预先定义目标函数和社区数量等优点而得到广泛关注.但是,LPA算法的标签传播过程存在不确定性和随机性,影响了社区发现的准确性和稳定性.提出一种新的基于标签传播的社区发现算法LPA_SI(Label Propagation Algorithm based on Significance and Influence).首先,采用新的节点重要性度量方法对节点进行排序;其次,提出一种新的标签影响力计算方法更新每个节点的标签;最后,在真实数据集和人工数据集上的实验表明,LPA_SI在复杂度相近的情况下能够显著提高社区发现的质量,并具有较好的稳定性.展开更多
对电力系统中重要节点进行有效区分,有助于在资源有限的条件下对重要节点施加额外保护或改变拓扑结构,从而提高系统鲁棒性、降低事故发生的概率。受网页排序算法启发,提出电气链接结构分析的随机方法(electrical stochastic approach fo...对电力系统中重要节点进行有效区分,有助于在资源有限的条件下对重要节点施加额外保护或改变拓扑结构,从而提高系统鲁棒性、降低事故发生的概率。受网页排序算法启发,提出电气链接结构分析的随机方法(electrical stochastic approach for link structure analysis,E-SALSA)用于电力系统重要节点评估。该算法综合考虑了电力系统拓扑结构、潮流等因素对节点的影响,能够有效反映电力系统的真实情况,并且其特点更符合电力系统背景。在IEEE300节点电力系统中,使用失负荷规模和最大子群规模两个指标对E-SALSA算法与电气介数算法、基于共同引用的超链接引导的主题搜索(model based on co-citation hypertext induced topic search,MBCC-HITS)算法进行了对比分析。结果证明E-SALSA算法相比电气介数算法在两个指标上都具有优势,相比MBCC-HITS算法能够更综合考虑各方面因素对节点的影响,进而证明了E-SALSA算法的合理性、有效性。展开更多
文摘当前,民航旅客价值分析把每一个旅客当作彼此不相关联的实体,忽略了旅客间存在的关系。针对这种情况,提出从旅客间的相互影响角度出发,量化这种影响的强弱。基于PNR(Passenger Name Record)数据构建民航旅客社会网络,从系统科学、网络关系和互联网搜索这三个角度研究社会网络中节点重要性的评估算法,并把这三种算法应用在民航旅客社会网络中。最后,通过F-度量方法对这三种算法计算出的重要节点进行相似性比较。实验结果表明,该方法能够有效地得到民航旅客社会网络中的重要旅客。
文摘针对现有复杂网络节点重要性排序方法无法处理目标体系网络节点异质连边有向有权的难题,提出一种面向目标体系网络的节点重要性排序方法。利用K-shell算法计算网络节点的初始重要值,并在PageRank算法的节点重要性传递中考虑重要性分配趋强的特点和连边权重,提出K-shell和PageRank扩展(Extended K-shell and PageRank,EKSPR)算法,并给出EKSPR算法的收敛性证明,进行了作战仿真实验验证和算例对比分析。实验结果表明,EKSPR算法相对于K-shell算法和PageRank算法更适用于处理目标体系网络节点重要性排序,并且效率优于均值EKSPR算法。
文摘近年来,高质量社区的挖掘和发现已经成为社会网络研究一个热点.其中,基于标签传播的社区挖掘算法(Label Propagation Algorithm,简称LPA)由于具有近似线性时间复杂度且无须预先定义目标函数和社区数量等优点而得到广泛关注.但是,LPA算法的标签传播过程存在不确定性和随机性,影响了社区发现的准确性和稳定性.提出一种新的基于标签传播的社区发现算法LPA_SI(Label Propagation Algorithm based on Significance and Influence).首先,采用新的节点重要性度量方法对节点进行排序;其次,提出一种新的标签影响力计算方法更新每个节点的标签;最后,在真实数据集和人工数据集上的实验表明,LPA_SI在复杂度相近的情况下能够显著提高社区发现的质量,并具有较好的稳定性.
文摘对电力系统中重要节点进行有效区分,有助于在资源有限的条件下对重要节点施加额外保护或改变拓扑结构,从而提高系统鲁棒性、降低事故发生的概率。受网页排序算法启发,提出电气链接结构分析的随机方法(electrical stochastic approach for link structure analysis,E-SALSA)用于电力系统重要节点评估。该算法综合考虑了电力系统拓扑结构、潮流等因素对节点的影响,能够有效反映电力系统的真实情况,并且其特点更符合电力系统背景。在IEEE300节点电力系统中,使用失负荷规模和最大子群规模两个指标对E-SALSA算法与电气介数算法、基于共同引用的超链接引导的主题搜索(model based on co-citation hypertext induced topic search,MBCC-HITS)算法进行了对比分析。结果证明E-SALSA算法相比电气介数算法在两个指标上都具有优势,相比MBCC-HITS算法能够更综合考虑各方面因素对节点的影响,进而证明了E-SALSA算法的合理性、有效性。