现实世界中存在大量多目标优化问题,其中大规模多目标优化问题是目前研究的热点,然而现有多目标进化算法缺少有效进化算子来处理大规模优化问题。因此,本文提出了一种基于社会学习粒子群的大规模多目标优化算法(A largescale multi-obje...现实世界中存在大量多目标优化问题,其中大规模多目标优化问题是目前研究的热点,然而现有多目标进化算法缺少有效进化算子来处理大规模优化问题。因此,本文提出了一种基于社会学习粒子群的大规模多目标优化算法(A largescale multi-objective algorithm based on a social learning particle swarm optimization algorithm,LMOSLPSO)。LMOSLPSO首先采用转换的密度估计策略求解每个粒子的适应值;然后基于社会学习粒子群思想,设计了一种有效的粒子进化的方法;最后执行多目标优化算法RVEA(a reference vector guided evolutionary algorithm)的环境选择操作来选择下一代个体。其中,转换的密度估计策略有利于平衡算法种群收敛性和多样性,新设计的粒子进化的方法有利于提高算法的搜索能力。在9个标准的大规模优化测试问题上,与多个近期提出的多目标优化算法进行对比。实验结果表明,该文所提出的LMOSLPSO算法具有较好的收敛性及分布多样性。展开更多
机器人学是现在及未来科技发展的重点,路径规划是机器人学中的一个重要课题.生物界一些群居动物有严格的等级制度和职责分工,受社会群居动物行为启发,提出社会群体搜索算法(social group search algorithm,SGSO).社会群体搜索算法对群...机器人学是现在及未来科技发展的重点,路径规划是机器人学中的一个重要课题.生物界一些群居动物有严格的等级制度和职责分工,受社会群居动物行为启发,提出社会群体搜索算法(social group search algorithm,SGSO).社会群体搜索算法对群体的分类及信息反馈机制——领导-追随机制的制定,降低了早熟的概率,交叉变异和淘汰机制的引入增加了搜索范围,减少了陷入局部最优的可能.同时,对提出的社会群体搜索算法进行了分析,从理论上证明了算法的收敛性;将社会群体搜索算法应用于机器人路径规划进行仿真,从实验中验证了算法的有效性,并与遗传算法和粒子群算法比较,进一步证明了社会群体搜索算法在机器人路径规划问题中的有效性和高效性.展开更多
灰狼优化(Grey wolf optimizer,GWO)算法是一种近年提出的新的群智能优化算法,为了解决其寻优精度低以及收敛速度慢的缺点,该文提出一种灰狼-粒子群智能优化(Grey wolf optimizer_particle swarm optimization,GWO_PSO)算法。采用混沌...灰狼优化(Grey wolf optimizer,GWO)算法是一种近年提出的新的群智能优化算法,为了解决其寻优精度低以及收敛速度慢的缺点,该文提出一种灰狼-粒子群智能优化(Grey wolf optimizer_particle swarm optimization,GWO_PSO)算法。采用混沌算法中的Logistic混沌映射初始化种群,使狼群种群开始分布更加趋于随机;提出一种繁衍淘汰机制,等级不同的灰狼对于下一代灰狼产生不同的权重,并且对狼群中最差的一批灰狼予以淘汰,根据繁衍机制生成新的种群;采用粒子群优化算法的速度矢量,为狼群狩猎提供方向。根据仿真实验,GWO_PSO算法的收敛速度和精度相较与粒子群优化(Particle swarm optimization,PSO)和GWO都有了极大的提高,相较于其他的改进灰狼算法,GWO_PSO表现出不错的寻优能力。展开更多
文摘现实世界中存在大量多目标优化问题,其中大规模多目标优化问题是目前研究的热点,然而现有多目标进化算法缺少有效进化算子来处理大规模优化问题。因此,本文提出了一种基于社会学习粒子群的大规模多目标优化算法(A largescale multi-objective algorithm based on a social learning particle swarm optimization algorithm,LMOSLPSO)。LMOSLPSO首先采用转换的密度估计策略求解每个粒子的适应值;然后基于社会学习粒子群思想,设计了一种有效的粒子进化的方法;最后执行多目标优化算法RVEA(a reference vector guided evolutionary algorithm)的环境选择操作来选择下一代个体。其中,转换的密度估计策略有利于平衡算法种群收敛性和多样性,新设计的粒子进化的方法有利于提高算法的搜索能力。在9个标准的大规模优化测试问题上,与多个近期提出的多目标优化算法进行对比。实验结果表明,该文所提出的LMOSLPSO算法具有较好的收敛性及分布多样性。
文摘机器人学是现在及未来科技发展的重点,路径规划是机器人学中的一个重要课题.生物界一些群居动物有严格的等级制度和职责分工,受社会群居动物行为启发,提出社会群体搜索算法(social group search algorithm,SGSO).社会群体搜索算法对群体的分类及信息反馈机制——领导-追随机制的制定,降低了早熟的概率,交叉变异和淘汰机制的引入增加了搜索范围,减少了陷入局部最优的可能.同时,对提出的社会群体搜索算法进行了分析,从理论上证明了算法的收敛性;将社会群体搜索算法应用于机器人路径规划进行仿真,从实验中验证了算法的有效性,并与遗传算法和粒子群算法比较,进一步证明了社会群体搜索算法在机器人路径规划问题中的有效性和高效性.
文摘灰狼优化(Grey wolf optimizer,GWO)算法是一种近年提出的新的群智能优化算法,为了解决其寻优精度低以及收敛速度慢的缺点,该文提出一种灰狼-粒子群智能优化(Grey wolf optimizer_particle swarm optimization,GWO_PSO)算法。采用混沌算法中的Logistic混沌映射初始化种群,使狼群种群开始分布更加趋于随机;提出一种繁衍淘汰机制,等级不同的灰狼对于下一代灰狼产生不同的权重,并且对狼群中最差的一批灰狼予以淘汰,根据繁衍机制生成新的种群;采用粒子群优化算法的速度矢量,为狼群狩猎提供方向。根据仿真实验,GWO_PSO算法的收敛速度和精度相较与粒子群优化(Particle swarm optimization,PSO)和GWO都有了极大的提高,相较于其他的改进灰狼算法,GWO_PSO表现出不错的寻优能力。