针对经典网络社区划分方法存在的划分结果难以理解的问题,基于源自物理学中核子场的拓扑势理论,提出针对具有聚类效应的社会网络和复杂网络的社区结点重要度排序算法.在算法中,首先利用NSP方法(network soft partitionbased on topologi...针对经典网络社区划分方法存在的划分结果难以理解的问题,基于源自物理学中核子场的拓扑势理论,提出针对具有聚类效应的社会网络和复杂网络的社区结点重要度排序算法.在算法中,首先利用NSP方法(network soft partitionbased on topological potential)依据结点在社区中所起的作用将其分为内部结点和边界结点,其次分别对内部结点和边界结点的重要性进行量化并排序,最后将2个排序结果进行拼接以构成最终的排序结果.实验表明,文中算法不但可以解决前述问题,而且具有和快速排序算法同样的时间复杂度.展开更多
Community structure is an important characteristic in real complex network.It is a network consists ofgroups of nodes within which links are dense but among which links are sparse.In this paper, the evolving network i...Community structure is an important characteristic in real complex network.It is a network consists ofgroups of nodes within which links are dense but among which links are sparse.In this paper, the evolving network includenode, link and community growth and we apply the community size preferential attachment and strength preferentialattachment to a growing weighted network model and utilize weight assigning mechanism from BBV model.Theresulting network reflects the intrinsic community structure with generalized power-law distributions of nodes'degreesand strengths.展开更多
基金Supported by the National Nature Science Foundation of China under Grant No.10832006PuJiang Project of Shanghai under Grant No.09PJ1405000+1 种基金Key Disciplines of Shanghai Municipality (S30104)Research Grant of Shanghai University under Grant No.SHUCX092014
文摘Community structure is an important characteristic in real complex network.It is a network consists ofgroups of nodes within which links are dense but among which links are sparse.In this paper, the evolving network includenode, link and community growth and we apply the community size preferential attachment and strength preferentialattachment to a growing weighted network model and utilize weight assigning mechanism from BBV model.Theresulting network reflects the intrinsic community structure with generalized power-law distributions of nodes'degreesand strengths.