In the goal optimization and control optimization process the problems with common artificial neural network algorithm are unsure convergence, insufficient post-training network precision, and slow training speed, in ...In the goal optimization and control optimization process the problems with common artificial neural network algorithm are unsure convergence, insufficient post-training network precision, and slow training speed, in which partial minimum value question tends to occur. This paper conducted an in-depth study on the causes of the limi-tations of the algorithm, presented a rapid artificial neural network algorithm, which is characterized by integrating multiple algorithms and by using their complementary advan-tages. The salient feature of the method is self-organization, which can effectively prevent the optimized results from tending to be partial minimum values. Overall optimization can be achieved with this method, goal function can be searched for in overall scope. With op-timization control of coal mine ventilator as a practical application, the paper proves that by integrating multiple artificial neural network algorithms, best control optimization and goal optimized can be achieved.展开更多
According to the nonlinear and time dependent features of the ventilation systems for coal mines, a neural network method is applied to control the ventilator for coal mines in real time. The technical processes of co...According to the nonlinear and time dependent features of the ventilation systems for coal mines, a neural network method is applied to control the ventilator for coal mines in real time. The technical processes of coal mine ventilation system are introduced, and the principle of controlling a ventilation fan is also explained in detail. The artificial neutral network method is used to calculate the wind quantity needed by work spots in coal mine on the basis of the data collected by the system, including ventilation conditions, environmental temperatures, humidity, coal dust and the contents of all kinds of poisonous and harmful gases. Then the speed of ventilation fan is controlled according to the required wind which is determined by an overall integration of data. A neural network method is presented for overall optimized solution or the genetic algorithm of simulated annealing.展开更多
基金Supported by the Science Foundation of the Liaoning Province(2004C011)
文摘In the goal optimization and control optimization process the problems with common artificial neural network algorithm are unsure convergence, insufficient post-training network precision, and slow training speed, in which partial minimum value question tends to occur. This paper conducted an in-depth study on the causes of the limi-tations of the algorithm, presented a rapid artificial neural network algorithm, which is characterized by integrating multiple algorithms and by using their complementary advan-tages. The salient feature of the method is self-organization, which can effectively prevent the optimized results from tending to be partial minimum values. Overall optimization can be achieved with this method, goal function can be searched for in overall scope. With op-timization control of coal mine ventilator as a practical application, the paper proves that by integrating multiple artificial neural network algorithms, best control optimization and goal optimized can be achieved.
文摘According to the nonlinear and time dependent features of the ventilation systems for coal mines, a neural network method is applied to control the ventilator for coal mines in real time. The technical processes of coal mine ventilation system are introduced, and the principle of controlling a ventilation fan is also explained in detail. The artificial neutral network method is used to calculate the wind quantity needed by work spots in coal mine on the basis of the data collected by the system, including ventilation conditions, environmental temperatures, humidity, coal dust and the contents of all kinds of poisonous and harmful gases. Then the speed of ventilation fan is controlled according to the required wind which is determined by an overall integration of data. A neural network method is presented for overall optimized solution or the genetic algorithm of simulated annealing.