Objective To investigate the effect of Zuogui Jiangtang Jieyu Formula(左归降糖解郁方,ZJJF)on hippocampal neuron apoptosis in diabetic rats with depression and to ascertain whether its mechanism involves the regulation...Objective To investigate the effect of Zuogui Jiangtang Jieyu Formula(左归降糖解郁方,ZJJF)on hippocampal neuron apoptosis in diabetic rats with depression and to ascertain whether its mechanism involves the regulation of JNK signaling pathway.Methods(i)A total of 72 specific pathogen-free(SPF)grade male Sprague Dawley(SD)rats were randomly divided into six groups,with 12 rats in each group:control,model,metformin(Met,0.18 g/kg)+fluoxetine(Flu,1.8 mg/kg),and the high-,medium-,and low-ZJJF dosages(ZJJF-H,20.52 g/kg;ZJJF-M,10.26 g/kg;ZJJF-L,5.13 g/kg)groups.All groups except control group were injected once via the tail vein with streptozotocin(STZ,38 mg/kg)combined with 28 d of chronic unpredictable mild stress(CUMS)to establish diabetic rat models with depression.During the CUMS modeling period,treatments were administered via gavage,with control and model groups receiving an equivalent volume of distilled water for 28 d.The efficacy of ZJJF in reducing blood sugar and alleviating depression was evaluated by measuring fasting blood glucose,insulin,and glycated hemoglobin levels,along with behavioral assessments,including the open field test(OFT),forced swim test(FST),and sucrose preference test(SPT).Hippocampal tissue damage and neuronal apoptosis were evaluated using hematoxylin-eosin(HE)staining and terminal deoxynucleotidyl transferase-mediated dUTP nickend labeling(TUNEL)staining.Apoptosis-related proteins Bax,Bcl-2,caspase-3,and the expression levels of JNK/Elk-1/c-fos signaling pathway were detected using Western blot and real-time quantitative polymerase chain reaction(RT-qPCR).(ii)To further elucidate the role of JNK signaling pathway in hippocampal neuronal apoptosis and the pharmacological effects of ZJJF,an additional 50 SPF grade male SD rats were randomly divided into five groups,with 10 rats in each group:control,model,SP600125(SP6,a JNK antagonist,10 mg/kg),ZJJF(20.52 g/kg),and ZJJF(20.52 g/kg)+Anisomycin(Aniso,a JNK agonist,15 mg/kg)groups.Except for control group,all groups were established as diabetic rat models with depression,and treatments were administered via gavage for ZJJF and intraperitoneal injection for SP6 and Aniso for 28 d during the CUMS modeling period.Behavioral changes in rats were evaluated through the OFT,FST,and SPT,and hippocampal neuron damage and apoptosis were observed using HE staining,Nissl staining,TUNEL staining,and transmission electron microscopy(TEM).Changes in apoptosis-related proteins and JNK signaling pathway in the hippocampal tissues of rats were also analyzed.展开更多
A low-power IC for function electrical stimulation (FES) of nerves is designed for an implantable system and fabricated in CSMC's 0.6μm CMOS technology. The IC can be used for stimulating animals' spinal nerve bu...A low-power IC for function electrical stimulation (FES) of nerves is designed for an implantable system and fabricated in CSMC's 0.6μm CMOS technology. The IC can be used for stimulating animals' spinal nerve bundles and other nerves connected with a cuff type electrode. It consists of a pre-amplifier,a main amplifier,and an output stage. According to the neural signal spectrum,the bandwidth of the FES signal generator circuit is defined from 1Hz to 400kHz. The gain of the circuit is about 66dB with an output impedance of 900. The 1C can function under a single supply voltage of 3-5V. A rail-to-rail output stage helps to use the coupled power efficiently. The measured time domain performance shows that the bandwidth and the gain of the IC agree with the design. The power consumption is lower than 6mW.展开更多
The module for function electrical stimulation (FES) of neurons is designed for the research of the neural function regeneration microelectronic system, which is an in-body embedded micro module. It is implemented b...The module for function electrical stimulation (FES) of neurons is designed for the research of the neural function regeneration microelectronic system, which is an in-body embedded micro module. It is implemented by using discrete devices at first and characterized in vitro. The module is used to stimulate sciatic nerve and spinal cord of rats and rabbits for in-vivo real-time experiments of the neural function regeneration system. Based on the module, a four channel module for the FES of neurons is designed for 12 sites cuff electrode or 10 sites shaft electrode. Three animal experiments with total five rats and two rabbits were made. In the in-vivo experiment, the neural signals including spontaneous and imitated were regenerated by the module. The stimulating signal was used to drive sciatic nerve and spinal cord of rats and rabbits, successfully caused them twitch in different parts of their bodies, such as legs, tails, and fingers. This testifies that the neural function regeneration system can regenerate the neural signals.展开更多
Since the previous research works are not synthetic and accurate enough for building a precise hypertension risk evaluation system,by ranking the significances for hypertension factors according to the information gai...Since the previous research works are not synthetic and accurate enough for building a precise hypertension risk evaluation system,by ranking the significances for hypertension factors according to the information gains on 2 231 normotensive and 823 hypertensive samples,totally 42 different neural network models are built and tested.The prediction accuracy of a model whose inputs are 26 factors is found to be much higher than the 81.61% obtained by previous research work. The prediction matching rates of the model for "hypertension or not","systolic blood pressure",and "diastolic blood pressure" are 95.79%,98.22% and 98.41%,respectively.Based on the found model and the object oriented techniques,an online hypertension risk evaluation system is developed,being able to gather new samples,learn the new samples,and improve its prediction accuracy automatically.展开更多
Based on the 4-channel neural signal regeneration system which is realized by using discrete devices and successfully used for in-vivo experiments on rats and rabbits, a single channel neural signal regeneration integ...Based on the 4-channel neural signal regeneration system which is realized by using discrete devices and successfully used for in-vivo experiments on rats and rabbits, a single channel neural signal regeneration integrated circuit (IC)is designed and realized in CSMC ' s 0. 6 μm CMOS ( complementary metal-oxide-semiconductor transistor ) technology. The IC consists of a neural signal detection circuit with an adjustable gain, a buffer, and a function electrical stimulation (FES) circuit. The neural signal regenerating IC occupies a die area of 1.42 mm × 1.34 mm. Under a dual supply voltage of ±2. 5 V, the DC power consumption is less than 10 mW. The on-wafer measurement results are as follows: the output resistor is 118 ml), the 3 dB bandwidth is greater than 30 kHz, and the gain can be variable from 50 to 90 dB. The circuit is used for in-vivo experiments on the rat' s sciatic nerve as well as on the spinal cord with the cuff type electrode array and the twin-needle electrode. The neural signal is successfully regenerated both on a rat' s sciatic nerve bundle and on the spinal cord.展开更多
A microelectronic circuit is used to regenerate the neural signals between the proximal end and the distal end of an injured nerve.An experimental scheme is designed and carried out to verify the feasibility of the so...A microelectronic circuit is used to regenerate the neural signals between the proximal end and the distal end of an injured nerve.An experimental scheme is designed and carried out to verify the feasibility of the so-called microelectronic neural bridge(MNB).The sciatic signals of the source spinal toad which are evoked by chemical stimuli are used as source signals to stimulate the sciatic of the controlled spinal toad.The sciatic nerve signals of the source spinal toad,the regenerated sciatic signals in the controlled spinal toad,and the resulting electromyography(EMG)signals associated with the gastrocnemius muscle movements of the controlled spinal toad are displayed and recorded by an oscilloscope.By analyzing the coherence between the source sciatic nerve signals and the regenerated sciatic nerve signals and the coherence between the regenerated nerve signals and the EMG signals,it is proved that the regenerated sciatic nerve signals have a relationship with the source sciatic nerve signals and control shrinkage of the leg of the controlled toad.展开更多
A neuronal signal detecting circuit and a neuronal signal stimulating circuit designed for a monolithic integrated MEA(micro-electrode array) system are described. As a basic cell of the circuits, an OPA( operation...A neuronal signal detecting circuit and a neuronal signal stimulating circuit designed for a monolithic integrated MEA(micro-electrode array) system are described. As a basic cell of the circuits, an OPA( operational amplifier) is designed with low power, low noise, small size and high gain. The detecting circuit has a chip area of 290 μm × 400 μm, a power dissipation of 2.02 mW, an equivalent input noise of 17.72 nV/ Hz, a gain of 60. 5 dB, and an output voltage from - 2. 48 to + 2. 5 V. The stimulating circuit has a chip area of 130 μm × 290 μm, a power dissipation of 740 μW, and an output voltage from - 2. 5 to 2. 04 V. The parameters show that two circuits are suitable for a monolithic integrated MEA system. The detecting circuit and MEA have been fabricated. The test results show that the detecting circuit works well.展开更多
In order to enhance the accuracy and reliability of wireless location under non-line-of-sight (NLOS) environments,a novel neural network (NN) location approach using the digital broadcasting signals is presented. ...In order to enhance the accuracy and reliability of wireless location under non-line-of-sight (NLOS) environments,a novel neural network (NN) location approach using the digital broadcasting signals is presented. By the learning ability of the NN and the closely approximate unknown function to any degree of desired accuracy,the input-output mapping relationship between coordinates and the measurement data of time of arrival (TOA) and time difference of arrival (TDOA) is established. A real-time learning algorithm based on the extended Kalman filter (EKF) is used to train the multilayer perceptron (MLP) network by treating the linkweights of a network as the states of the nonlinear dynamic system. Since the EKF-based learning algorithm approximately gives the minimum variance estimate of the linkweights,the convergence is improved in comparison with the backwards error propagation (BP) algorithm. Numerical results illustrate thatthe proposedalgorithmcanachieve enhanced accuracy,and the performance ofthe algorithmis betterthanthat of the BP-based NN algorithm and the least squares (LS) algorithm in the NLOS environments. Moreover,this location method does not depend on a particular distribution of the NLOS error and does not need line-of-sight ( LOS ) or NLOS identification.展开更多
Due to the non-linearity behavior of the precision positioning system, an accurate mathematical control model is difficult to set up, a novel control method for ultra-precision alignment is presented. This method reli...Due to the non-linearity behavior of the precision positioning system, an accurate mathematical control model is difficult to set up, a novel control method for ultra-precision alignment is presented. This method relies on neural network and alignment marks that are in the form of 100μm pitch gratings. The 0-th order Moire signals' intensity and its intensity rate are chosen as input variables of the neural network. The characteristics of the neural network make it possible to perform self-training and self-adjusting so as to achieve automatic precision alignment. A neural network model for precision positioning is set up. The model is composed of three neural layers, i.e. input layer, hidden layer and output layer. Driving signal is obtained by mapping Moire signals' intensity and its intensity rate. The experimental results show that neural network control for precision positioning can effectively improve positioning speed with high accuracy. It has the advantages of fast, stable response and good robustness. The device based on neural network can achieve the positioning accuracy of ± 0. 5μm.展开更多
Objective To examine the important roles of microRNAs (miRNAs) in regulating amphid structure and function, we performed a computational analysis for the genetic loci required for the sensory perception and their po...Objective To examine the important roles of microRNAs (miRNAs) in regulating amphid structure and function, we performed a computational analysis for the genetic loci required for the sensory perception and their possibly corresponding miRNAs in C. elegans. Methods Total 55 genetic loci required for the amphid structure and function were selected. Sequence alignment was combined with E value evaluation to investigate and identify the possible corresponding miRNAs. Results Total 30 genes among the 55 genetic loci selected have their possible corresponding regulatory miRNA(s), and identified genes participate in the regulation of almost all aspects of amphid structure and function. In addition, our data suggest that both the amphid structure and the amphid functions might be regulated by a series of network signaling pathways. Moreover, the distribution of miRNAs along the 3' untranslated region (UTR) of these 30 genes exhibits different patterns. Conclusion We present the possible miRNA-mediated signaling pathways involved in the regulation of chemosensation and thermosensation by controlling the corresponding sensory neuron and interneuron functions. Our work will be useful for better understanding of the miRNA-mediated control of the chemotaxis and thermotaxis in C. elegans.展开更多
A low-power, high-gain circuit for function electrical stimulation (FES) is designed for the microelectronic neural signal regeneration system based on CSMC (CSMC Technologies Corporation) 0. 6μm CMOS (complemen...A low-power, high-gain circuit for function electrical stimulation (FES) is designed for the microelectronic neural signal regeneration system based on CSMC (CSMC Technologies Corporation) 0. 6μm CMOS (complementary metal-oxide-semiconductor transistor) technology. It can be used to stimulate microelectrodes connected with the nerve bundles to regenerate neural signals. This circuit consists of two stages: a full differential folded-cascode amplifier input stage and a complementary class-AB output stage with an overload protection circuit. The rail-to-rail input and output stages are used to ensure a wide range of input and output voltages. The simulation results show that the gain of the circuit is 81 dB; the 3 dB-bandwidth is 295 kHz. The chip occupies a die area of 1.06 mm × 0. 52 mm. The on-wafer measurement results show that under a single supply voltage of + 5 V, the DC power consumption is about 7. 5 mW and the output voltage amplitude is 4. 8 V. The chip can also mn well under single supply voltage of + 3.3 V.展开更多
The problem of blind separation of signals in post nonlinear mixture is addressed in this paper. The post nonlinear mixture is formed by a component wise nonlinear distortion after the linear mixture. Hence a nonlin...The problem of blind separation of signals in post nonlinear mixture is addressed in this paper. The post nonlinear mixture is formed by a component wise nonlinear distortion after the linear mixture. Hence a nonlinear adjusting part placed in front of the linear separation structure is needed to compensate for the distortion in separating such signals. The learning rules for the post nonlinear separation structure are derived by a maximum likelihood approach. An algorithm for blind separation of post nonlinearly mixed sub and super Gaussian signals is proposed based on some previous work. Multilayer perceptrons are used in this algorithm to model the nonlinear part of the separation structure. The algorithm switches between sub and super Gaussian probability models during learning according to a stability condition and operates in a block adaptive manner. The effectiveness of the algorithm is verified by experiments on simulated and real world signals.展开更多
The c-Jun N-terminal kinases (JNKs) are important regulators of a variety of physiological and pathological processes both in the central and in the peripheral nervous systems. JNKs are considered as crucial mediato...The c-Jun N-terminal kinases (JNKs) are important regulators of a variety of physiological and pathological processes both in the central and in the peripheral nervous systems. JNKs are considered as crucial mediators of neuronal cell death in response to stress and injury. However, recent studies have provided substantial evidence that the JNK pathway plays an important role in neuronal migration. Here, we will give a brief introduction of the JNK signaling pathway and put more emphasis on its role in nettronal migration.展开更多
A nonlinear single neuron is demonstrated to exhibit stochastic resonance by theoretical analysis and numerical simulations. This single neuron is used for noisy periodic signal transmission, and significant performan...A nonlinear single neuron is demonstrated to exhibit stochastic resonance by theoretical analysis and numerical simulations. This single neuron is used for noisy periodic signal transmission, and significant performance of raising input output SNR gain can be achieved. The research of this paper not only gives a very simple model of neuron with stochastic resonance, but also enlarges the application scope of neuron to the transmission of periodic signals.展开更多
Objective To screen and identify differentially expressed genes in the dorsal root ganglion (DRG) in early experimental diabetic rats. Methods Diabetic model rats were induced by single intraperitoneal injection of ...Objective To screen and identify differentially expressed genes in the dorsal root ganglion (DRG) in early experimental diabetic rats. Methods Diabetic model rats were induced by single intraperitoneal injection of streptozotocin (STZ). At the second week after STZ injection, the sensory nerve conduction velocities (SNCV) of sciatic nerve were measured as an indicator of neuropathy. The technique of silver-staining mRNA differential display polymerase chain reaction (DD-PCR) was used to detect the levels of differentially expressed genes in rat DRG. The cDNA fragments that displayed differentially were identified by reverse-hybridization, cloned and sequenced subsequently, and then confirmed by Northern blot. Results The SNCV in the diabetic model group [n = 9, (45.25±10.38) m/s] reduced obviously compared with the control group [n = 8, (60.10± 11.92) m/s] (P 〈 0.05). Seven distinct cDNA clones, one was up-regulated gene and the others were downregulated ones, were isolated by silver-staining mRNA differential display method and confirmed by Northern blot. According to the results of sequence alignment with GenBank data, majority of the clones had no significant sequence similarity to previously reported genes except only one that showed high homology to 6-pyruvoyl-tetrahydropterin synthase mRNA (accession No., BC059140), which had not been reported to relate to diabetic neuropathy. Conclusion These differentially expressed genes in the diabetic DRG may contribute to the pathogenesis of diabetic peripheral neuropathy.展开更多
基金National Natural Science Foundation of China(82104836 and 82104793)Science and Technology Talent Promotion Project of Hunan Province(2023TJ-N22).
文摘Objective To investigate the effect of Zuogui Jiangtang Jieyu Formula(左归降糖解郁方,ZJJF)on hippocampal neuron apoptosis in diabetic rats with depression and to ascertain whether its mechanism involves the regulation of JNK signaling pathway.Methods(i)A total of 72 specific pathogen-free(SPF)grade male Sprague Dawley(SD)rats were randomly divided into six groups,with 12 rats in each group:control,model,metformin(Met,0.18 g/kg)+fluoxetine(Flu,1.8 mg/kg),and the high-,medium-,and low-ZJJF dosages(ZJJF-H,20.52 g/kg;ZJJF-M,10.26 g/kg;ZJJF-L,5.13 g/kg)groups.All groups except control group were injected once via the tail vein with streptozotocin(STZ,38 mg/kg)combined with 28 d of chronic unpredictable mild stress(CUMS)to establish diabetic rat models with depression.During the CUMS modeling period,treatments were administered via gavage,with control and model groups receiving an equivalent volume of distilled water for 28 d.The efficacy of ZJJF in reducing blood sugar and alleviating depression was evaluated by measuring fasting blood glucose,insulin,and glycated hemoglobin levels,along with behavioral assessments,including the open field test(OFT),forced swim test(FST),and sucrose preference test(SPT).Hippocampal tissue damage and neuronal apoptosis were evaluated using hematoxylin-eosin(HE)staining and terminal deoxynucleotidyl transferase-mediated dUTP nickend labeling(TUNEL)staining.Apoptosis-related proteins Bax,Bcl-2,caspase-3,and the expression levels of JNK/Elk-1/c-fos signaling pathway were detected using Western blot and real-time quantitative polymerase chain reaction(RT-qPCR).(ii)To further elucidate the role of JNK signaling pathway in hippocampal neuronal apoptosis and the pharmacological effects of ZJJF,an additional 50 SPF grade male SD rats were randomly divided into five groups,with 10 rats in each group:control,model,SP600125(SP6,a JNK antagonist,10 mg/kg),ZJJF(20.52 g/kg),and ZJJF(20.52 g/kg)+Anisomycin(Aniso,a JNK agonist,15 mg/kg)groups.Except for control group,all groups were established as diabetic rat models with depression,and treatments were administered via gavage for ZJJF and intraperitoneal injection for SP6 and Aniso for 28 d during the CUMS modeling period.Behavioral changes in rats were evaluated through the OFT,FST,and SPT,and hippocampal neuron damage and apoptosis were observed using HE staining,Nissl staining,TUNEL staining,and transmission electron microscopy(TEM).Changes in apoptosis-related proteins and JNK signaling pathway in the hippocampal tissues of rats were also analyzed.
文摘A low-power IC for function electrical stimulation (FES) of nerves is designed for an implantable system and fabricated in CSMC's 0.6μm CMOS technology. The IC can be used for stimulating animals' spinal nerve bundles and other nerves connected with a cuff type electrode. It consists of a pre-amplifier,a main amplifier,and an output stage. According to the neural signal spectrum,the bandwidth of the FES signal generator circuit is defined from 1Hz to 400kHz. The gain of the circuit is about 66dB with an output impedance of 900. The 1C can function under a single supply voltage of 3-5V. A rail-to-rail output stage helps to use the coupled power efficiently. The measured time domain performance shows that the bandwidth and the gain of the IC agree with the design. The power consumption is lower than 6mW.
基金The National Natural Science Foundation of China(No69825101,90377013)
文摘The module for function electrical stimulation (FES) of neurons is designed for the research of the neural function regeneration microelectronic system, which is an in-body embedded micro module. It is implemented by using discrete devices at first and characterized in vitro. The module is used to stimulate sciatic nerve and spinal cord of rats and rabbits for in-vivo real-time experiments of the neural function regeneration system. Based on the module, a four channel module for the FES of neurons is designed for 12 sites cuff electrode or 10 sites shaft electrode. Three animal experiments with total five rats and two rabbits were made. In the in-vivo experiment, the neural signals including spontaneous and imitated were regenerated by the module. The stimulating signal was used to drive sciatic nerve and spinal cord of rats and rabbits, successfully caused them twitch in different parts of their bodies, such as legs, tails, and fingers. This testifies that the neural function regeneration system can regenerate the neural signals.
基金The National High Technology Research and Development Program of China(863Program)(No.2006AA02Z347)
文摘Since the previous research works are not synthetic and accurate enough for building a precise hypertension risk evaluation system,by ranking the significances for hypertension factors according to the information gains on 2 231 normotensive and 823 hypertensive samples,totally 42 different neural network models are built and tested.The prediction accuracy of a model whose inputs are 26 factors is found to be much higher than the 81.61% obtained by previous research work. The prediction matching rates of the model for "hypertension or not","systolic blood pressure",and "diastolic blood pressure" are 95.79%,98.22% and 98.41%,respectively.Based on the found model and the object oriented techniques,an online hypertension risk evaluation system is developed,being able to gather new samples,learn the new samples,and improve its prediction accuracy automatically.
基金The National Natural Science Foundation of China(No.90307013,90707005)
文摘Based on the 4-channel neural signal regeneration system which is realized by using discrete devices and successfully used for in-vivo experiments on rats and rabbits, a single channel neural signal regeneration integrated circuit (IC)is designed and realized in CSMC ' s 0. 6 μm CMOS ( complementary metal-oxide-semiconductor transistor ) technology. The IC consists of a neural signal detection circuit with an adjustable gain, a buffer, and a function electrical stimulation (FES) circuit. The neural signal regenerating IC occupies a die area of 1.42 mm × 1.34 mm. Under a dual supply voltage of ±2. 5 V, the DC power consumption is less than 10 mW. The on-wafer measurement results are as follows: the output resistor is 118 ml), the 3 dB bandwidth is greater than 30 kHz, and the gain can be variable from 50 to 90 dB. The circuit is used for in-vivo experiments on the rat' s sciatic nerve as well as on the spinal cord with the cuff type electrode array and the twin-needle electrode. The neural signal is successfully regenerated both on a rat' s sciatic nerve bundle and on the spinal cord.
基金The National Natural Science Foundation of China(No.90307013,90707005)the Natural Science Foundation of Jiangsu Province(No.BK2008032)+1 种基金Special Foundation and Open Foundation of State Key Laboratory of Bioelectronics of Southeast UniversityNantong Planning Project of Science and Technology(No.K2009037)
文摘A microelectronic circuit is used to regenerate the neural signals between the proximal end and the distal end of an injured nerve.An experimental scheme is designed and carried out to verify the feasibility of the so-called microelectronic neural bridge(MNB).The sciatic signals of the source spinal toad which are evoked by chemical stimuli are used as source signals to stimulate the sciatic of the controlled spinal toad.The sciatic nerve signals of the source spinal toad,the regenerated sciatic signals in the controlled spinal toad,and the resulting electromyography(EMG)signals associated with the gastrocnemius muscle movements of the controlled spinal toad are displayed and recorded by an oscilloscope.By analyzing the coherence between the source sciatic nerve signals and the regenerated sciatic nerve signals and the coherence between the regenerated nerve signals and the EMG signals,it is proved that the regenerated sciatic nerve signals have a relationship with the source sciatic nerve signals and control shrinkage of the leg of the controlled toad.
基金The National Natural Science Foundation of China (No.90307013,90707005)the Natural Science Foundation of Jiangsu Province(No. BK2008032)Open Foundation of State Key Laboratory of Bio-Electronics of Southeast University
文摘A neuronal signal detecting circuit and a neuronal signal stimulating circuit designed for a monolithic integrated MEA(micro-electrode array) system are described. As a basic cell of the circuits, an OPA( operational amplifier) is designed with low power, low noise, small size and high gain. The detecting circuit has a chip area of 290 μm × 400 μm, a power dissipation of 2.02 mW, an equivalent input noise of 17.72 nV/ Hz, a gain of 60. 5 dB, and an output voltage from - 2. 48 to + 2. 5 V. The stimulating circuit has a chip area of 130 μm × 290 μm, a power dissipation of 740 μW, and an output voltage from - 2. 5 to 2. 04 V. The parameters show that two circuits are suitable for a monolithic integrated MEA system. The detecting circuit and MEA have been fabricated. The test results show that the detecting circuit works well.
基金The National High Technology Research and Development Program of China (863 Program) (No.2008AA01Z227)the Cultivatable Fund of the Key Scientific and Technical Innovation Project of Ministry of Education of China (No.706028)
文摘In order to enhance the accuracy and reliability of wireless location under non-line-of-sight (NLOS) environments,a novel neural network (NN) location approach using the digital broadcasting signals is presented. By the learning ability of the NN and the closely approximate unknown function to any degree of desired accuracy,the input-output mapping relationship between coordinates and the measurement data of time of arrival (TOA) and time difference of arrival (TDOA) is established. A real-time learning algorithm based on the extended Kalman filter (EKF) is used to train the multilayer perceptron (MLP) network by treating the linkweights of a network as the states of the nonlinear dynamic system. Since the EKF-based learning algorithm approximately gives the minimum variance estimate of the linkweights,the convergence is improved in comparison with the backwards error propagation (BP) algorithm. Numerical results illustrate thatthe proposedalgorithmcanachieve enhanced accuracy,and the performance ofthe algorithmis betterthanthat of the BP-based NN algorithm and the least squares (LS) algorithm in the NLOS environments. Moreover,this location method does not depend on a particular distribution of the NLOS error and does not need line-of-sight ( LOS ) or NLOS identification.
基金The Natural Science Foundation of Higher EducationInstitutions of Jiangsu Province (No.04KJB510073).
文摘Due to the non-linearity behavior of the precision positioning system, an accurate mathematical control model is difficult to set up, a novel control method for ultra-precision alignment is presented. This method relies on neural network and alignment marks that are in the form of 100μm pitch gratings. The 0-th order Moire signals' intensity and its intensity rate are chosen as input variables of the neural network. The characteristics of the neural network make it possible to perform self-training and self-adjusting so as to achieve automatic precision alignment. A neural network model for precision positioning is set up. The model is composed of three neural layers, i.e. input layer, hidden layer and output layer. Driving signal is obtained by mapping Moire signals' intensity and its intensity rate. The experimental results show that neural network control for precision positioning can effectively improve positioning speed with high accuracy. It has the advantages of fast, stable response and good robustness. The device based on neural network can achieve the positioning accuracy of ± 0. 5μm.
文摘Objective To examine the important roles of microRNAs (miRNAs) in regulating amphid structure and function, we performed a computational analysis for the genetic loci required for the sensory perception and their possibly corresponding miRNAs in C. elegans. Methods Total 55 genetic loci required for the amphid structure and function were selected. Sequence alignment was combined with E value evaluation to investigate and identify the possible corresponding miRNAs. Results Total 30 genes among the 55 genetic loci selected have their possible corresponding regulatory miRNA(s), and identified genes participate in the regulation of almost all aspects of amphid structure and function. In addition, our data suggest that both the amphid structure and the amphid functions might be regulated by a series of network signaling pathways. Moreover, the distribution of miRNAs along the 3' untranslated region (UTR) of these 30 genes exhibits different patterns. Conclusion We present the possible miRNA-mediated signaling pathways involved in the regulation of chemosensation and thermosensation by controlling the corresponding sensory neuron and interneuron functions. Our work will be useful for better understanding of the miRNA-mediated control of the chemotaxis and thermotaxis in C. elegans.
基金The National Natural Science Foundation of China(No90377013)
文摘A low-power, high-gain circuit for function electrical stimulation (FES) is designed for the microelectronic neural signal regeneration system based on CSMC (CSMC Technologies Corporation) 0. 6μm CMOS (complementary metal-oxide-semiconductor transistor) technology. It can be used to stimulate microelectrodes connected with the nerve bundles to regenerate neural signals. This circuit consists of two stages: a full differential folded-cascode amplifier input stage and a complementary class-AB output stage with an overload protection circuit. The rail-to-rail input and output stages are used to ensure a wide range of input and output voltages. The simulation results show that the gain of the circuit is 81 dB; the 3 dB-bandwidth is 295 kHz. The chip occupies a die area of 1.06 mm × 0. 52 mm. The on-wafer measurement results show that under a single supply voltage of + 5 V, the DC power consumption is about 7. 5 mW and the output voltage amplitude is 4. 8 V. The chip can also mn well under single supply voltage of + 3.3 V.
文摘The problem of blind separation of signals in post nonlinear mixture is addressed in this paper. The post nonlinear mixture is formed by a component wise nonlinear distortion after the linear mixture. Hence a nonlinear adjusting part placed in front of the linear separation structure is needed to compensate for the distortion in separating such signals. The learning rules for the post nonlinear separation structure are derived by a maximum likelihood approach. An algorithm for blind separation of post nonlinearly mixed sub and super Gaussian signals is proposed based on some previous work. Multilayer perceptrons are used in this algorithm to model the nonlinear part of the separation structure. The algorithm switches between sub and super Gaussian probability models during learning according to a stability condition and operates in a block adaptive manner. The effectiveness of the algorithm is verified by experiments on simulated and real world signals.
基金This work was supported in part by the National Natural Sciences Foundation of China (No.30530660)the Chinese Academy of Sciences Knowledge Innovation Program (No.KSCX1-YW-R-62)the National Basic Research of China (No.2006CB504100 and No. 2006CB500701).
文摘The c-Jun N-terminal kinases (JNKs) are important regulators of a variety of physiological and pathological processes both in the central and in the peripheral nervous systems. JNKs are considered as crucial mediators of neuronal cell death in response to stress and injury. However, recent studies have provided substantial evidence that the JNK pathway plays an important role in neuronal migration. Here, we will give a brief introduction of the JNK signaling pathway and put more emphasis on its role in nettronal migration.
文摘A nonlinear single neuron is demonstrated to exhibit stochastic resonance by theoretical analysis and numerical simulations. This single neuron is used for noisy periodic signal transmission, and significant performance of raising input output SNR gain can be achieved. The research of this paper not only gives a very simple model of neuron with stochastic resonance, but also enlarges the application scope of neuron to the transmission of periodic signals.
基金the grant from Technical Program of Social Development ofNantong Municipality (No.S30043)the Natural ScienceFoundation of Nantong University (No. 05Z084)
文摘Objective To screen and identify differentially expressed genes in the dorsal root ganglion (DRG) in early experimental diabetic rats. Methods Diabetic model rats were induced by single intraperitoneal injection of streptozotocin (STZ). At the second week after STZ injection, the sensory nerve conduction velocities (SNCV) of sciatic nerve were measured as an indicator of neuropathy. The technique of silver-staining mRNA differential display polymerase chain reaction (DD-PCR) was used to detect the levels of differentially expressed genes in rat DRG. The cDNA fragments that displayed differentially were identified by reverse-hybridization, cloned and sequenced subsequently, and then confirmed by Northern blot. Results The SNCV in the diabetic model group [n = 9, (45.25±10.38) m/s] reduced obviously compared with the control group [n = 8, (60.10± 11.92) m/s] (P 〈 0.05). Seven distinct cDNA clones, one was up-regulated gene and the others were downregulated ones, were isolated by silver-staining mRNA differential display method and confirmed by Northern blot. According to the results of sequence alignment with GenBank data, majority of the clones had no significant sequence similarity to previously reported genes except only one that showed high homology to 6-pyruvoyl-tetrahydropterin synthase mRNA (accession No., BC059140), which had not been reported to relate to diabetic neuropathy. Conclusion These differentially expressed genes in the diabetic DRG may contribute to the pathogenesis of diabetic peripheral neuropathy.