A microelectrode array(MEA) is presented, which is composed of 60 independent electrodes with 59 working ones and one reference one, and they are divided into 30 pairs. Except for the reference electrode, each pair ...A microelectrode array(MEA) is presented, which is composed of 60 independent electrodes with 59 working ones and one reference one, and they are divided into 30 pairs. Except for the reference electrode, each pair consists of one stimulating electrode and one recording electrode. Supported by the peripheral circuits, four electrode states to study the bioelectrical signal of biological tissue or slice cultured in-vitro on the surface of the electrodes can be realized through each pair of electrodes. The four electrode states are stimulation, recording, stimulation and recording simultaneously, and isolation. The state of each pair of working electrodes can be arbitrarily controlled according to actual needs. The MEAs are fabricated in printed circuit board (PCB) technology. The total area of the PCB-based MEA is 49 mm × 49 mm. The impedance measurement of MEA is carried out in 0.9% sodium chloride solution at room temperature by means of 2-point measurements with an Agilent LCR meter, and the test signal for the impedance measurement is sinusoidal (AC voltage 50 mV, sweeping frequency 20 Hz to 10 kHz). The electrode impedance is between 200 and 3 kΩ while the frequency is between 500 and 1 000 Hz. The electrode impedance magnitude is inversely proportional to the frequency. Experiments of toad sciatic nerve in-vitro stimulation and recording and signal regeneration between isolated toad sciatic nerves are carried out on the PCB-based MEA. The results show that the MEA can be used for bioelectrical signal stimulation, recording, stimulation and recording simultaneously, and isolation of biological tissues or slices in-vitro.展开更多
Extracting characteristic brain signals and simultaneous recording animals behaving could help us to understand the complex behavior of neuronal ensembles. Here, a system was established to record local field potentia...Extracting characteristic brain signals and simultaneous recording animals behaving could help us to understand the complex behavior of neuronal ensembles. Here, a system was established to record local field potentials (LFP) and extracellular signal or multiple-unit discharge and behavior synchronously by utilizing electrophysiology and integrated circuit technique. It comprised microelectrodes and micro-driver assembly, analog front end (AFE),while a computer (Pentium III ) was used as the platform for the graphic user interface, which was developed using the LabVIEW programming language. It was designed as a part of ongoing research to develop a portable wireless neural signal recording system. We believe that this information will be useful for the research of brain-computer interface.展开更多
GABAergic neurons are the major inhibitory interneurons that powerfully control the function of spinal neuronal networks.In recent years,tremendous progresses have been made in understanding the transcriptional contro...GABAergic neurons are the major inhibitory interneurons that powerfully control the function of spinal neuronal networks.In recent years,tremendous progresses have been made in understanding the transcriptional control of GABAergic neuron development in the dorsal spinal cord.New experimental approaches provide a relatively high throughput way to study the molecular regulation of subgroup fate determination.Our understanding of the molecular mechanisms on GABAergic neuron development in the dorsal spinal cord is rapidly expanding.Recent studies have defined several transcription factors that play essential roles in GABAergic neuron development in the spinal dorsal horn.Here,we review results of very recent analyses of the mechanisms that specify the GABAergic neuron development in the dorsal spinal cord,especially the progresses in the homeodomain(HD) and basic-helix-loop-helix(bHLH) containing transcription factors.展开更多
The Sox proteins play critical roles during the development of animals, including sex determination and central nervous system development. In this study, the SoxB2 gene was cloned from a mollusk, the Zhikong scallop ...The Sox proteins play critical roles during the development of animals, including sex determination and central nervous system development. In this study, the SoxB2 gene was cloned from a mollusk, the Zhikong scallop (Chlamysfarreri), and characterized with respect to phylogeny and tissue distribution. The full-length cDNA and genomic DNA sequences of C. farreri SoxB2 (CflSoxB2) were obtained by rapid amplification of cDNA ends and genome walking, respectively, using a partial cDNA fragment from the highly conserved DNA-binding domain, i.e., the High Mobility Group (HMG) box. The full-length cDNA sequence of CJSoxB2 was 2 048 bp and encoded 268 amino acids protein. The genomic sequence was 5 551 bp in length with only one exon. Several conserved elements, such as the TATA-box, GC-box, CAAT-box, GATA-box, and Sox/sry-sex/testis-determining and related HMG box factors, were found in the promoter region. Furthermore, real-time quantitative reverse transcription PCR assays were carried out to assess the mRNA expression of CJSoxB2 in different tissues. SoxB2 was highly expressed in the mantle, moderately in the digestive gland and gill, and weakly expressed in the gonad, kidney and adductor muscle. In male and female gonads at different developmental stages of reproduction, the expression levels of CfS;oxB2 were similar. Considering the specific expression and roles of SoxB2 in other animals, in particular vertebrates, and the fact that there are many pallial nerves in the mantle, cerebral ganglia in the digestive gland and gill nerves in gill, we propose a possible essential role in nervous tissue function for SoxB2 in C.farreri.展开更多
The human norepinephrine transporter(NET) gene was cloned and structurally analyzed. The far 5’ fragment containing exon 1 (a non-coding exon) and exon 2 was sequenced. The transcription start site of the gene in hum...The human norepinephrine transporter(NET) gene was cloned and structurally analyzed. The far 5’ fragment containing exon 1 (a non-coding exon) and exon 2 was sequenced. The transcription start site of the gene in human brain stem tissue was determined by primer extension analysis. It was found that the gene could be transcribed from multiple starting points. The 5’ flanking sequence contains a proximal G-C rich region, one possible GSG elemeflt and several SP1 sites. However it does not contain TATA box and CAAT box motifS. Gel shift analysis with nuclear extracts from different tissues of mouse shows that the G-C rich region may be involved in tissue specific expression of the gene.展开更多
Axon regeneration is crucial for recovery from neurological diseases. Numerous studies have identified several genes, microRNAs (miRNAs), and transcription factors (TFs) that influence axon regeneration. However, ...Axon regeneration is crucial for recovery from neurological diseases. Numerous studies have identified several genes, microRNAs (miRNAs), and transcription factors (TFs) that influence axon regeneration. However, the regulatory networks involved have not been fully elucidated. In the present study, we analyzed a regulatory network of 51 miRNAs, 27 TFs, and 59 target genes, which is involved in axon regeneration. We identified 359 pairs of feed- forward loops (FFLs), seven important genes (Naplll, Arhgef12, Sema6d, Akt3, Trim2, Rabllfip2, and Rps6ka3), six important miRNAs (hsa-miR-204-5p, hsa-miR-124-3p, hsa-miR-26a-5p, hsa-miR-16-5p, hsa-miR-17-5p, and hsa- miR-15b-5p), and eight important TFs (Smada2, Flil, Wtl, Sp6, Sp3, Smad4, Smad5, and Crebl), which appear to play an important role in axon regeneration. Functional enrichment analysis revealed that axon-associated genes are involved mainly in the regulation of cellular component organization, axonogenesis, and cell morphogenesis during neuronal differentiation. However, these findings need to be validated by further studies.展开更多
Three hypotheses have attempted to explain the phenomenon of contagious yawning. It has been hypothesized that it is a fixed action pattern for which the releasing stimulus is the observation of another yawn, that it ...Three hypotheses have attempted to explain the phenomenon of contagious yawning. It has been hypothesized that it is a fixed action pattern for which the releasing stimulus is the observation of another yawn, that it is the result of non-conscious mimicry emerging through close links between perception and action or that it is the result of empathy, involving the ability to engage in mental state attribution. This set of experiments sought to distinguish between these hypotheses by examining contagious yawning in a species that is unlikely to show nonconscious mimicry and empathy but does respond to social stimuli: the red-footed tortoise Geochelone carbonaria. A demonstrator tortoise was conditioned to yawn when presented with a red square-shaped stimulus. Observer tortoises were exposed to three conditions: observation of conditioned yawn, non demonstration control, and stimulus only control. We measured the number of yawns for each observer animal in each condition. There was no difference between conditions. Experiment 2 therefore increased the number of conditioned yawns presented. Again, there was no significant difference between conditions. It seemed plausible that the tortoises did not view the conditioned yawn as a real yawn and therefore a final experiment was run using video recorded stimuli. The observer tortoises were presented with three conditions: real yawn, conditioned yawns and empty background. Again there was no significant difference between conditions. We therefore conclude that the red-footed tortoise does not yawn in response to observing a conspecific yawn. This suggests that contagious yawning is not the result of a fixed action pattern but may involve more complex social processes [Current Zoology 57 (4): 477-484, 2011].展开更多
A prototype of hybrid neural recording interface has been developed for extracellular neural recording. It consists of a silicon-based plane microelectrode array and a CMOS low noise neural amplifier chip. The neural ...A prototype of hybrid neural recording interface has been developed for extracellular neural recording. It consists of a silicon-based plane microelectrode array and a CMOS low noise neural amplifier chip. The neural amplifier chip is designed and implemented in 0.18 μm N-well CMOS 1P6M technology. The area of the neural preamplifier is only 0.042 mm2 with a gain of 48.3 dB. The input equivalent noise is 4.73 btVrms within pass bands of 4 kHz. To avoid cable tethering for high dense mul- tichannel neural recording interface and make it compact, flip-chip bonding is used to integrate the preamplifier chip and the microelectrode together. The hybrid device measures 3 mm×5.5 mm×330μm, which is convenient for implant or in-vivo neu- ral recording. The hybrid device was testified in in-vivo experiment. Neural signals were recorded from hippocampus region of anesthetized Sprague Dawley rats successfully.展开更多
Research has shown that the hypomagnetic field(HMF)can affect embryo development,cell proliferation,learning and memory,and in vitro tubulin assembly.In the present study,we aimed to elucidate the molecular mechanism ...Research has shown that the hypomagnetic field(HMF)can affect embryo development,cell proliferation,learning and memory,and in vitro tubulin assembly.In the present study,we aimed to elucidate the molecular mechanism by which the HMF exerts its effect,by comparing the transcriptome profiles of human neuroblastoma cells exposed to either the HMF or the geomagnetic field.A total of 2464 differentially expressed genes(DEGs)were identified,216 of which were up-regulated and2248 of which were down-regulated after exposure to the HMF.These DEGs were found to be significantly clustered into several key processes,namely macromolecule localization,protein transport,RNA processing,and brain function.Seventeen DEGs were verified by real-time quantitative PCR,and the expression levels of nine of these DEGs were measured every 6 h.Most notably,MAPK1 and CRY2,showed significant up-and down-regulation,respectively,during the first 6 h of HMF exposure,which suggests involvement of the MAPK pathway and cryptochrome in the early bio-HMF response.Our results provide insights into the molecular mechanisms underlying the observed biological effects of the HMF.展开更多
基金The National Natural Science Foundation of China(No. 61076118, 90307013, 90707005)the Natural Science Foundation of Jiangsu Province (No. BK2008032)Special Foundation and Open Foundation of the State Key Laboratory of Bioelectronics of Southeast University
文摘A microelectrode array(MEA) is presented, which is composed of 60 independent electrodes with 59 working ones and one reference one, and they are divided into 30 pairs. Except for the reference electrode, each pair consists of one stimulating electrode and one recording electrode. Supported by the peripheral circuits, four electrode states to study the bioelectrical signal of biological tissue or slice cultured in-vitro on the surface of the electrodes can be realized through each pair of electrodes. The four electrode states are stimulation, recording, stimulation and recording simultaneously, and isolation. The state of each pair of working electrodes can be arbitrarily controlled according to actual needs. The MEAs are fabricated in printed circuit board (PCB) technology. The total area of the PCB-based MEA is 49 mm × 49 mm. The impedance measurement of MEA is carried out in 0.9% sodium chloride solution at room temperature by means of 2-point measurements with an Agilent LCR meter, and the test signal for the impedance measurement is sinusoidal (AC voltage 50 mV, sweeping frequency 20 Hz to 10 kHz). The electrode impedance is between 200 and 3 kΩ while the frequency is between 500 and 1 000 Hz. The electrode impedance magnitude is inversely proportional to the frequency. Experiments of toad sciatic nerve in-vitro stimulation and recording and signal regeneration between isolated toad sciatic nerves are carried out on the PCB-based MEA. The results show that the MEA can be used for bioelectrical signal stimulation, recording, stimulation and recording simultaneously, and isolation of biological tissues or slices in-vitro.
基金Shandong Science Development FundGrant number:041120101
文摘Extracting characteristic brain signals and simultaneous recording animals behaving could help us to understand the complex behavior of neuronal ensembles. Here, a system was established to record local field potentials (LFP) and extracellular signal or multiple-unit discharge and behavior synchronously by utilizing electrophysiology and integrated circuit technique. It comprised microelectrodes and micro-driver assembly, analog front end (AFE),while a computer (Pentium III ) was used as the platform for the graphic user interface, which was developed using the LabVIEW programming language. It was designed as a part of ongoing research to develop a portable wireless neural signal recording system. We believe that this information will be useful for the research of brain-computer interface.
基金the National Natural Science Foundation of China (30470556)the Program for New Century Excellent Talents in University
文摘GABAergic neurons are the major inhibitory interneurons that powerfully control the function of spinal neuronal networks.In recent years,tremendous progresses have been made in understanding the transcriptional control of GABAergic neuron development in the dorsal spinal cord.New experimental approaches provide a relatively high throughput way to study the molecular regulation of subgroup fate determination.Our understanding of the molecular mechanisms on GABAergic neuron development in the dorsal spinal cord is rapidly expanding.Recent studies have defined several transcription factors that play essential roles in GABAergic neuron development in the spinal dorsal horn.Here,we review results of very recent analyses of the mechanisms that specify the GABAergic neuron development in the dorsal spinal cord,especially the progresses in the homeodomain(HD) and basic-helix-loop-helix(bHLH) containing transcription factors.
基金Supported by the National Natural Science Foundation of China(Nos.31072190,30972239)the National Basic Research Program of China(973 Program)(No.2010CB126406)+2 种基金the Taishan Scholar Program of Shandong Provincethe Doctoral Fund of Ministry of Education of China(No.20100132110014)the Natural Science Foundation of Shandong Province(No.ZR2009DM019)
文摘The Sox proteins play critical roles during the development of animals, including sex determination and central nervous system development. In this study, the SoxB2 gene was cloned from a mollusk, the Zhikong scallop (Chlamysfarreri), and characterized with respect to phylogeny and tissue distribution. The full-length cDNA and genomic DNA sequences of C. farreri SoxB2 (CflSoxB2) were obtained by rapid amplification of cDNA ends and genome walking, respectively, using a partial cDNA fragment from the highly conserved DNA-binding domain, i.e., the High Mobility Group (HMG) box. The full-length cDNA sequence of CJSoxB2 was 2 048 bp and encoded 268 amino acids protein. The genomic sequence was 5 551 bp in length with only one exon. Several conserved elements, such as the TATA-box, GC-box, CAAT-box, GATA-box, and Sox/sry-sex/testis-determining and related HMG box factors, were found in the promoter region. Furthermore, real-time quantitative reverse transcription PCR assays were carried out to assess the mRNA expression of CJSoxB2 in different tissues. SoxB2 was highly expressed in the mantle, moderately in the digestive gland and gill, and weakly expressed in the gonad, kidney and adductor muscle. In male and female gonads at different developmental stages of reproduction, the expression levels of CfS;oxB2 were similar. Considering the specific expression and roles of SoxB2 in other animals, in particular vertebrates, and the fact that there are many pallial nerves in the mantle, cerebral ganglia in the digestive gland and gill nerves in gill, we propose a possible essential role in nervous tissue function for SoxB2 in C.farreri.
文摘The human norepinephrine transporter(NET) gene was cloned and structurally analyzed. The far 5’ fragment containing exon 1 (a non-coding exon) and exon 2 was sequenced. The transcription start site of the gene in human brain stem tissue was determined by primer extension analysis. It was found that the gene could be transcribed from multiple starting points. The 5’ flanking sequence contains a proximal G-C rich region, one possible GSG elemeflt and several SP1 sites. However it does not contain TATA box and CAAT box motifS. Gel shift analysis with nuclear extracts from different tissues of mouse shows that the G-C rich region may be involved in tissue specific expression of the gene.
基金Project supported by the Key Project of Hebei North University(No.120177)the Science and Technology Bureau Research Development Plan of Zhangjiakou City in Hebei(No.0911021D-4)China
文摘Axon regeneration is crucial for recovery from neurological diseases. Numerous studies have identified several genes, microRNAs (miRNAs), and transcription factors (TFs) that influence axon regeneration. However, the regulatory networks involved have not been fully elucidated. In the present study, we analyzed a regulatory network of 51 miRNAs, 27 TFs, and 59 target genes, which is involved in axon regeneration. We identified 359 pairs of feed- forward loops (FFLs), seven important genes (Naplll, Arhgef12, Sema6d, Akt3, Trim2, Rabllfip2, and Rps6ka3), six important miRNAs (hsa-miR-204-5p, hsa-miR-124-3p, hsa-miR-26a-5p, hsa-miR-16-5p, hsa-miR-17-5p, and hsa- miR-15b-5p), and eight important TFs (Smada2, Flil, Wtl, Sp6, Sp3, Smad4, Smad5, and Crebl), which appear to play an important role in axon regeneration. Functional enrichment analysis revealed that axon-associated genes are involved mainly in the regulation of cellular component organization, axonogenesis, and cell morphogenesis during neuronal differentiation. However, these findings need to be validated by further studies.
文摘Three hypotheses have attempted to explain the phenomenon of contagious yawning. It has been hypothesized that it is a fixed action pattern for which the releasing stimulus is the observation of another yawn, that it is the result of non-conscious mimicry emerging through close links between perception and action or that it is the result of empathy, involving the ability to engage in mental state attribution. This set of experiments sought to distinguish between these hypotheses by examining contagious yawning in a species that is unlikely to show nonconscious mimicry and empathy but does respond to social stimuli: the red-footed tortoise Geochelone carbonaria. A demonstrator tortoise was conditioned to yawn when presented with a red square-shaped stimulus. Observer tortoises were exposed to three conditions: observation of conditioned yawn, non demonstration control, and stimulus only control. We measured the number of yawns for each observer animal in each condition. There was no difference between conditions. Experiment 2 therefore increased the number of conditioned yawns presented. Again, there was no significant difference between conditions. It seemed plausible that the tortoises did not view the conditioned yawn as a real yawn and therefore a final experiment was run using video recorded stimuli. The observer tortoises were presented with three conditions: real yawn, conditioned yawns and empty background. Again there was no significant difference between conditions. We therefore conclude that the red-footed tortoise does not yawn in response to observing a conspecific yawn. This suggests that contagious yawning is not the result of a fixed action pattern but may involve more complex social processes [Current Zoology 57 (4): 477-484, 2011].
基金supported in part by the National Natural Science Foundation of China(Grant Nos.61076023,61275200,31070965)the National Basic Research Program of China("973" project)(Grant No.2011CB933203)the National High-Tech Research and Development Program of China("863" Project)(Grant No.2012AA030308)
文摘A prototype of hybrid neural recording interface has been developed for extracellular neural recording. It consists of a silicon-based plane microelectrode array and a CMOS low noise neural amplifier chip. The neural amplifier chip is designed and implemented in 0.18 μm N-well CMOS 1P6M technology. The area of the neural preamplifier is only 0.042 mm2 with a gain of 48.3 dB. The input equivalent noise is 4.73 btVrms within pass bands of 4 kHz. To avoid cable tethering for high dense mul- tichannel neural recording interface and make it compact, flip-chip bonding is used to integrate the preamplifier chip and the microelectrode together. The hybrid device measures 3 mm×5.5 mm×330μm, which is convenient for implant or in-vivo neu- ral recording. The hybrid device was testified in in-vivo experiment. Neural signals were recorded from hippocampus region of anesthetized Sprague Dawley rats successfully.
基金supported by the Queensland-Chinese Academy of Sciences(QCAS)Biotechnology Fund(GJHZ1131)the Project of Chinese Academy of Sciences for the Development of Major Scientific Research Equipment(YZ201148)+1 种基金the National Natural Science Foundation of China(31200628)the External Cooperation Program of Bureau of International Cooperation,Chinese Academy of Sciences(GJHZ201302)
文摘Research has shown that the hypomagnetic field(HMF)can affect embryo development,cell proliferation,learning and memory,and in vitro tubulin assembly.In the present study,we aimed to elucidate the molecular mechanism by which the HMF exerts its effect,by comparing the transcriptome profiles of human neuroblastoma cells exposed to either the HMF or the geomagnetic field.A total of 2464 differentially expressed genes(DEGs)were identified,216 of which were up-regulated and2248 of which were down-regulated after exposure to the HMF.These DEGs were found to be significantly clustered into several key processes,namely macromolecule localization,protein transport,RNA processing,and brain function.Seventeen DEGs were verified by real-time quantitative PCR,and the expression levels of nine of these DEGs were measured every 6 h.Most notably,MAPK1 and CRY2,showed significant up-and down-regulation,respectively,during the first 6 h of HMF exposure,which suggests involvement of the MAPK pathway and cryptochrome in the early bio-HMF response.Our results provide insights into the molecular mechanisms underlying the observed biological effects of the HMF.