期刊文献+
共找到10篇文章
< 1 >
每页显示 20 50 100
具周期边界的神经传播型方程的初边值问题解的存在唯一性 被引量:1
1
作者 张素丽 石丹青 +1 位作者 柴玉珍 李娟娟 《中北大学学报(自然科学版)》 CAS 北大核心 2016年第4期329-334,共6页
神经传播型方程的研究是非线性科学和神经科学交叉的前沿课题,既有实际应用背景,又有重要的理论意义.讨论了具周期边界的神经传播和非线性波动混合型方程的初边值问题,利用Galerkin方法及Sobolev空间理论证明了问题整体解的存在唯一性.
关键词 神经传播型方程 GALERKIN方法 存在唯一性 GRONWALL不等式
下载PDF
神经传播型方程解的blow-up
2
作者 李剑秋 《黑龙江商学院学报》 CAS 2000年第2期10-17,共8页
研究了神经传播拟线性发展方程utt-△ut=F(x,t,u,ut)的初边问题与初值问题解的blow-up问题。
关键词 拟线性发展方程 BLOW-UP 神经传播型方程
下载PDF
神经传播型拟线性方程柯西问题的解的Blow-up
3
作者 李剑秋 《哈尔滨商业大学学报(自然科学版)》 CAS 2001年第4期94-96,共3页
对犤1犦中研究的神经传播型方程utt-Δut=f(u)ut+g(u)的柯西问题解的Blow-up的结果推广到更为广泛的拟线性发展方程utt-Δut=F(x,t,u,ut)(1)的柯西问题解的Blow-up现象。文犤1犦的结果为本文的特殊情况。
关键词 神经传播型拟线性方程 柯西问题的解的Blow-up
下载PDF
神经传播型方程初边值问题解的长时间行为 被引量:24
4
作者 万维明 刘亚成 《应用数学学报》 CSCD 北大核心 1999年第2期311-314,共4页
神经传播型方程初边值问题解的长时间行为万维明,刘亚成(大连铁道学院基础部,大连116028)(哈尔滨工程大学数学力学系,哈尔滨150001)关于神经传播型方程的初边值问题解的整体存在性、非存在性与Blow-up,已有... 神经传播型方程初边值问题解的长时间行为万维明,刘亚成(大连铁道学院基础部,大连116028)(哈尔滨工程大学数学力学系,哈尔滨150001)关于神经传播型方程的初边值问题解的整体存在性、非存在性与Blow-up,已有一些结果(见[1,2]及所引文献)... 展开更多
关键词 神经传播型方程 初边值问题 长时间行为
原文传递
神经传播型方程解的blow-up 被引量:14
5
作者 刘亚成 于涛 《应用数学学报》 CSCD 北大核心 1995年第2期264-272,共9页
本文研究神经传播型非线性拟双曲方程Utt-△ut=f(u)ut+g(u)O)的初边值问题与初值问题解的blow-up问题,不但研究了对任意非负初值解的blow-up,而且利用一种改进了的特征函数法研究了对充分大初值解... 本文研究神经传播型非线性拟双曲方程Utt-△ut=f(u)ut+g(u)O)的初边值问题与初值问题解的blow-up问题,不但研究了对任意非负初值解的blow-up,而且利用一种改进了的特征函数法研究了对充分大初值解的blow-up. 展开更多
关键词 神经传播型方程 BLOW-UP 双曲方程 非线性
原文传递
神经传播型方程初边值问题解的Blow-up 被引量:1
6
作者 李剑秋 《数学的实践与认识》 CSCD 北大核心 2011年第6期204-208,共5页
研究了神经传播型拟线性发展方程u_(tt)-Δu_t=F(x,t,u,u_t)的初边值问题的解的Blow-up问题.
关键词 神经传播型拟线性发展方程 初边值问题 Blow.up
原文传递
一类非线性拟双曲方程的初边值问题 被引量:1
7
作者 刘亚成 郭秀芳 《黑龙江大学自然科学学报》 CAS 北大核心 2008年第1期46-49,共4页
用Galerkin方法结合能量估计研究任意维数的神经传播型非线性拟双曲方程的初边值问题。证明了当n≤3时,对非线性项在某些条件下,问题能得到整体时间L∞强解,当n≥4时,在f∈C,g∈C1,f,g′下方有界,f,g满足一定的增长条件下,问题得到了整... 用Galerkin方法结合能量估计研究任意维数的神经传播型非线性拟双曲方程的初边值问题。证明了当n≤3时,对非线性项在某些条件下,问题能得到整体时间L∞强解,当n≥4时,在f∈C,g∈C1,f,g′下方有界,f,g满足一定的增长条件下,问题得到了整体时间L2强解。根据需要,在n≥4时,引进了一种新的整体强解的概念,从实质上推广了文献[1]的结果。 展开更多
关键词 神经传播型 非线性 拟双曲方程 初边值问题 强解
下载PDF
Application of neural network to prediction of plate finish cooling temperature
8
作者 王丙兴 张殿华 +3 位作者 王君 于明 周娜 曹光明 《Journal of Central South University of Technology》 EI 2008年第1期136-140,共5页
To improve the deficiency of the control system of finish cooling temperature (FCT), a new model developed from a combination of a multilayer perception neural network as the self-learning system and traditional mathe... To improve the deficiency of the control system of finish cooling temperature (FCT), a new model developed from a combination of a multilayer perception neural network as the self-learning system and traditional mathematical model were brought forward to predict the plate FCT. The relationship between the self-learning factor of heat transfer coefficient and its influencing parameters such as plate thickness, start cooling temperature, was investigated. Simulative calculation indicates that the deficiency of FCT control system is overcome completely, the accuracy of FCT is obviously improved and the difference between the calculated and target FCT is controlled between -15 ℃ and 15 ℃. 展开更多
关键词 PLATE heat transfer coefficient mathematical model back propagation (BP) neural network
下载PDF
Storm surge disaster evaluation model based on an artificial neural network 被引量:1
9
作者 纪芳 侯一筠 《Chinese Journal of Oceanology and Limnology》 SCIE CAS CSCD 2011年第5期1142-1146,共5页
Back propagation is employed to forecast the current of a storm with various characteristics of storm surge; the technique is thus important in disaster forecasting. One of the most fuzzy types of information in the p... Back propagation is employed to forecast the current of a storm with various characteristics of storm surge; the technique is thus important in disaster forecasting. One of the most fuzzy types of information in the prediction of geological calamity is handled employing the information diffusion method. First, a single-step prediction model and neural network prediction model are employed to collect influential information used to predict the extreme tide level. Second, information is obtained using the information diffusion method, which improves the precision of risk recognition when there is insufficient information. Experiments demonstrate that the method proposed in this paper is simple and effective and provides better forecast results than other methods. Future work will focus on a more precise forecast model. 展开更多
关键词 storm surge information diffusion neural network prediction model extreme tide level risk recognition
下载PDF
Classification and Identification of Nuclear, Biological or Chemical Agents Taken from Remote Sensing Image by Using Neural Network
10
作者 Said El Yamani Samir Zeriouh Mustapha Boutahri Ahmed Roukhe 《Journal of Physical Science and Application》 2014年第3期177-182,共6页
In the context of new risks and threats associated to nuclear, biological and chemical (NBC) attacks, and given the shortcomings of certain analytical methods such as principal component analysis (PCA), a neural n... In the context of new risks and threats associated to nuclear, biological and chemical (NBC) attacks, and given the shortcomings of certain analytical methods such as principal component analysis (PCA), a neural network approach seems to be more accurate. PCA consists in projecting the spectrum of a gas collected from a remote sensing system in, firstly, a three-dimensional space, then in a two-dimensional one using a model of Multi-Layer Perceptron based neural network. It adopts during the learning process, the back propagation algorithm of the gradient, in which the mean square error output is continuously calculated and compared to the input until it reaches a minimal threshold value. This aims to correct the synaptic weights of the network. So, the Artificial Neural Network (ANN) tends to be more efficient in the classification process. This paper emphasizes the contribution of the ANN method in the spectral data processing, classification and identification and in addition, its fast convergence during the back propagation of the gradient. 展开更多
关键词 Artificial neural networks classification identification principal component analysis multi-layer perceptron back propagation of the gradient.
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部